

Nsort

™

User Guide

18 November 2016

Release 3.4

Nsort User Guide
Release 3.4.56

Copyright

 Ordinal Technology. 1997 - 20116 All rights reserved. Printed in the USA.

If this documentation is delivered to a U.S. Government Agency that is part of the Department
of Defense, then it is delivered with Restricted Rights and the following legend is applicable:

Restricted Rights Legend: Use, duplication, or disclosure of the Programs by the Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of DFARS 252.227-7013, Rights in
Technical Data and Computer Software (October 1988).

If this documentation is delivered to a U.S. Government Agency not within the Department of
Defense, then it is delivered with “Restricted Rights,” as defined in FAR 52.227-14, Rights in
Data - General, including Alternate III (June 1987).

HP-UX is a trademark of Hewlett-Packard Co.

Linux is a trademark of Linus Torvalds.

Ordinal and Nsort are trademarks of Ordinal Technology Corp.

POSIX is a trademark of the Institute of Electrical and Electronic Engineers (IEEE).

Solaris is a trademark of Sun Microsystems, Inc.

UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through
X/Open Company, Ltd.

Windows and Window NT are trademarks of Microsoft Corporation.

Contents
Introduction 1
Putting Nsort to Work for You 2
What Nsort Can Do 3

Sorting Data 5
Merging Input Streams 6
Summarizing Fields 8
Modifying Sort Actions 9

The Nsort Command Line 17
The Nsort Command Line 19

Standard Command Line 19
Specification Files 20
Global Options 21

System-wide Default File 21
User Home Directory File 22
Environment Variable 22
POSIX Sort Compatible Command Line 23
Windows Sort Compatible Command Line 26

Specification Language Overview 29
Nsort Statements 30

Character Constants 31

iv

Processing Nsort Commands 32
Data Definition Statements 33

Record Definition Qualifiers 34
Field Definition Qualifiers 35
Key Definition Qualifiers 36
Supported Key and Field Data Types 37

Sort Definition Statements 38
File Definition Statements 40

File Qualifiers 41
Configuration and Performance Statements 42

Method Qualifiers 43

Describing the Sort Data 45
Record Formats 46

Fixed Size Records 47
Variable (Length-Prefix) Records 48
Delimited Records 49

Field Definitions 52
Field Name 53
Size Qualifier 53
Delimiter Qualifier 54
Position Qualifier 55
Offset Qualifier 63
Maximum Field Size 63
Pad Qualifier 63
Fold_Upper and Fold_Lower 63

Key Definitions 64
Key Fields 64
Key Sort Direction 66
Key Number 66

Data Types 67
Binary Integer Data Types 67
Packed Decimal Type 67
Bit Type 68
Character Data Type 68
Nsort User Guide

v

Floating Point Data Type 69
Double-Precision Floating Point Data Type 69
Decimal Data Type 69
Month Data Type 70

Sort Definition Statements 71
Sorting 72
Merging Sorted Sets 74
Summarizing Data 76

Summarizing Separated Fields 78
Duplicate Handling 79
Transforming Data 80
Selecting Records 81
Count Limitation 83
Reformat 84

Input Reformatting 85
Output Reformatting 86
Reformatting Usage Notes 88

Derived Fields 90
Default Addition of Derived Fields 91
Counting by Key Value 92

Expressions 93
Conditional Expressions 94

Conditions 95
Match Detection 96

Configuration and Performance 97
Memory Usage 98
Number of Internal Threads 99
Sort Methods 100

Record and Pointer Sort 100
Merge and Radix Sort 100
Key Hashing 101

Statistics Output 102
Version Information 103
Nsort User Guide

vi

File I/O 104
Access Mode 104
Transfer Size 105
Count of Simultaneous I/O Requests 105
File System Defaults 105
Input and Output Files 106
Temporary Files 108

Dataset Size 111

Sort Subroutine Library 113
Compiling and Linking 114
Standard Sort Subroutine Usage 116

nsort_define 117
nsort_release_recs 118
nsort_release_end 119
nsort_return_recs 120
nsort_get_stats 121
nsort_print_stats 122
nsort_end 123
nsort_version 124
Example Application Program Performing a Sort 125

Merging Records 127
nsort_merge_define 128
Merge Input Callback 129
Example Application Program Performing a Merge 131

User-Defined Compares 133
Comparison Function Type 134
nsort_declare_function 136
Specifying a User-Defined Comparison 137

Error Handling 138
Getting an Error or Warning String 138
Error Callbacks 139
Raising an Error in a User-Defined Comparison or Merge Input
Callback Function 141
Nsort User Guide

vii

Errors and Warnings 143
Errors 144
Warnings 168

Index 173
Nsort User Guide

viii

Nsort User Guide

Preface
This preface provides an overview to the Nsort User Guide, including
sections on:

• The intended audience for this document.
• How this document is organized.
• The notational conventions used in this document.
• How to find more information about Nsort.

Intended Audience

Nsort User Guide is written for database administrators programmers
who use Nsort as part of their data warehousing management systems
and system administrators who manage large sort applications.

The document assumes that you are familiar with:

• Relational database.
• Your RDBMS vendor’s products.

x

How this Document is Organized

Chapter 1, “Introduction”
This chapter provides an introduction to the features and functionality
provided by the Nsort product.

Chapter 2, “The Nsort Command Line”
This chapter describes the Nsort standard and POSIX sort-like
command lines.

Chapter 3, “Specification Language Overview”
This chapter discusses Nsort sort specification statements, and explains
how to use sort specification files with Nsort.

Chapter 4, “Describing the Sort Data”
This chapter explains how to describe records and fields to Nsort.

Chapter 5, “Sort Definition Statements”
This chapter discusses how to sort, select, reformat and merge records.

Chapter 6, “Configuration and Performance”
This chapter discusses using Nsort’s configuration and performance
options.

Chapter 7, “Sort Subroutine Library”
This chapter presents the Nsort subroutine library which provides a
sort API for application programs.
Nsort User Guide

xi

Notational Conventions

The following conventions are used throughout this document:

For More Information

For additional information on Nsort or technical support for Nsort, you
can contact Ordinal Technology as follows:

• By telephone: 925-253-9204.

• By email: info@ordinal.com or support@ordinal.com.

• World-wide web: http://www.ordinal.com.

Convention Description

cd .. A command to be typed exactly
as it appears in the document.

nsort filename A placeholder for a user-supplied
value.

/data/spec The name of a file or a
directory path.

-summarize=total Example command lines or
specification statements.

NSORT The name of an UNIX
ENVIRONMENT VARIABLE.

TRUE The RESULT VALUE of a
conditional expression.
Nsort User Guide

http://www.ordinal.com

xii

Nsort User Guide

Introduction 1
Nsort™ is a multiprocessor, high speed sort utility and subroutine
library for UNIX™ and Windows™ systems. Nsort processes files at
high speeds by simultaneously using many processors and disks. Nsort
uses efficient, proprietary algorithms to sort records and reduce disk
I/O waits commonly associated with processing very large data sets.
Nsort speeds up both the processing of data outside a database system
and the loading of data into a database or data warehouse.

The rapid growth of the Internet, demand for more historical business
data, and falling disk prices are resulting in ever-larger corporate data
sets. Analyzing this data is an increasing challenge. Today various
Internet, credit bureau, direct marketing, telephone and utility
companies, as well as government agencies, are using Nsort to quickly
sort, merge, and summarize their large data sets.

 Nsort provides the sort features needed to presort load data for data
warehouse installations. Nsort can dramatically improve the performance
of your data warehouse loads.

This chapter introduces Nsort and provides a brief overview to the
Nsort product. This chapter discusses the following topics:

• How to put Nsort to work for you.
• What Nsort can do.

2

Putting Nsort to Work for You

If you are a database administrator responsible for large amounts of
data, sort performance affects many parts of your system. Nsort can
improve the speed of your bulk data transfer operations in the
following ways:

• Presort the incoming data by primary key so that the RDBMS can
append the data sequentially. If the table has no pre-existing primary
index, presorting expedites the creation of the primary index. Even if
the table already has a primary index, presorting often speeds the
bulk data load.

• Merge sorted data from multiple sources into one sorted file that can
be quickly copied into your data warehouse.

• Filter out unneeded or improperly-formed records before the RDBMS
loader even sees them.

• Summarize input data so that the RDBMS can directly load the
totaled data into a summary table.

• Prepare load data in advance of the load window, thus effectively
shortening the time you need to keep your data warehouse off-line.

• Make the most of your current hardware. With Nsort's help, you can
get your data loaded more quickly without having to purchase more
processors or memory.
Nsort User Guide

3

What Nsort Can Do

Nsort sorts, merges, summarizes, or concatenates files. Nsort can
perform its functions much faster than the standard UNIX sort or other
sort products.

Nsort allows you to customize the sort so that it suits the needs of your
application. Nsort can perform the following functions:

• Sort large data sets quickly.
• Merge pre-sorted input files into one sorted output file.
• Subtotal fields by key value and store the subtotal records in the

output file.
• Select records to include or omit using conditional criteria.
• Use selection criteria to create multiple sort output files.
• Sort by binary data keys as well as character data keys.
• Sort files with records and keys up to 65,535 bytes wide (or 8

megabytes for the Windows versions of Nsort).
• Handle input and output files as large as the underlying file system

supports, without any 4GB limit.
• Sort on an unlimited number of sort keys.
• Read sort input from multiple input files.
• Accept command lines for the POSIX sort utility included with most

UNIX implementations.
• Supports fixed-length, variable (length-prefix) and delimited (lines of

text) record types.
• Use multiple processors and disks in parallel.
• Add, drop, and reorder the fields in the sort records.
• Delete duplicate records.
• Perform an ascending or descending sort on each key.
• Use large main memories with 64-bit addressing to sort data without

using temporary files.
Nsort User Guide

4

This section introduces the major functions of Nsort and includes the
subsections discussing the following functions:

• Sorting data.
• Merging pre-sorted input streams into one output stream.
• Summarizing data.
• Modifying the action of your sort, merge, or summarize.
Nsort User Guide

5

Sorting Data

The sort operation takes one or more input files containing records and
orders the records by key value into one or more output files. Nsort
supports 7 different data key types: integer, unsigned integer, character,
IEEE floating point, double precision floating point, decimal character,
and month.

ABC Stores adds the daily receipt data from its stores to its centralized
data warehouse. Before loading the data into the data warehouse, the
database administrator uses Nsort to presort the data by the data
warehouse key values.

Figure 1-1 Basic Sort (by StoreID)

StoreID Date Time ProdID Price Qty Total
106 980201 13:45 103 5.98 2 11.96
101 980201 09:04 324 2.59 6 15.54
204 980201 15:56 678 4.89 1 4.89
131 980201 13:10 324 2.59 2 5.18
106 980201 14:14 231 3.29 3 9.87
131 980201 15:21 103 5.98 4 23.92
204 980201 14:14 324 2.59 1 2.59
131 980201 15:34 324 2.59 5 12.95
106 980201 16:50 103 5.98 1 5.98
101 980201 14:01 678 4.89 3 14.67
 .
 .
 .

StoreID Date Time ProdID Price Qty Total
101 980201 09:04 324 2.59 6 15.54
101 980201 14:01 678 4.89 3 14.67
106 980201 13:45 103 5.98 2 11.96
106 980201 14:14 231 3.29 3 9.87
106 980201 16:50 103 5.98 1 5.98
131 980201 13:10 324 2.59 2 5.18
131 980201 15:21 103 5.98 4 23.92
131 980201 15:34 324 2.59 5 12.95
204 980201 15:56 678 4.89 1 4.89
204 980201 14:14 324 2.59 1 2.59
 .
 .
 .
Nsort User Guide

6

Merging Input Streams

The merge operation takes several sorted input files and merges them
to produce one or more sorted output files.

XYZ Stores adds the daily receipt data from its stores to its centralized
data warehouse. The receipt data is sorted by data warehouse key
values at the individual stores and sent on tape to the centralized data
warehouse. The database administrator uses Nsort’s merge feature to
merge the presorted data files into one sorted file for the bulk data load.

The next page contains a diagram of a merge operation.
Nsort User Guide

7

Figure 1-2 Merging Input Streams

StoreID Date Time ProdID Price Qty Total
101 980201 09:04 324 2.59 6 15.54
101 980201 14:01 678 4.89 3 14.67
106 980201 13:45 103 5.98 2 11.96
106 980201 14:14 231 3.29 3 9.87
106 980201 16:50 103 5.98 1 5.98
131 980201 13:10 324 2.59 2 5.18
131 980201 15:21 103 5.98 4 23.92
131 980201 15:34 324 2.59 5 12.95
204 980201 15:56 678 4.89 1 4.89
204 980201 14:14 324 2.59 1 2.59
 .
 .
 .

StoreID Date Time ProdID Price Qty Total
101 980201 09:04 324 2.59 6 15.54
204 980201 15:56 678 4.89 1 4.89
 .
 .

StoreID Date Time ProdID Price Qty Total
101 980201 14:01 678 4.89 3 14.67
106 980201 13:45 103 5.98 2 11.96
106 980201 14:14 231 3.29 3 9.87
131 980201 15:34 324 2.59 5 12.95
 .
 .

StoreID Date Time ProdID Price Qty Total
106 980201 16:50 103 5.98 1 5.98
131 980201 13:10 324 2.59 2 5.18
131 980201 15:21 103 5.98 4 23.92
204 980201 14:14 324 2.59 1 2.59
 .
 .
Nsort User Guide

8

Summarizing Fields

Nsort can create summary files containing records subtotaled by key
value. Use summarize on either a sort or merge operation to subtotal
data fields for summary tables in your data warehouse.

ABC Stores maintains summary tables in their data warehouse to track
the sales of products by store and date. The database administrator uses
Nsort’s summarize feature to create the summary table data from the
daily receipt records.

Figure 1-3 Summarize Data

StoreID Date ProdID Qty Total
106 980201 103 2 11.96
101 980201 324 6 15.54
204 980201 324 1 4.89
131 980201 324 2 5.18
106 980201 103 3 17.94
131 980201 103 4 23.92
204 980201 324 1 2.59
131 980201 324 5 12.95
106 980201 103 1 5.98
101 980201 678 3 14.67
 .
 .

StoreID Date ProdID Qty Total
101 980201 324 6 15.54
101 980201 678 3 14.67
106 980201 103 6 35.88
131 980201 103 4 23.92
131 980201 324 7 18.13
204 980201 324 2 5.18
 .
 .
Nsort User Guide

9

Modifying Sort Actions

Nsort provides many options to customize your sort, merge, or
summarize operation. Nsort’s features include the following:

• Record definitions that describe the form of your input records.
• Field definitions that describe the form of your input data fields.
• Key definitions to specify the key fields and the order and direction

in which to sort them.
• Record layout specification that describe exactly how you want your

output records to look.
• Derived fields from the values of other fields in your data set.
• Record selection, allowing you to include or omit records from your

sort.
• Duplicate key processing.

This section discusses the options you can use to modify your sort,
merge, or summarize:

• Specifying which fields in the record you want to include in your sort
or merge and in each output file.

• Deriving new fields from the values of other fields.
• Creating multiple output files with different characteristics.
• Selecting records to include or omit from each output files.
• Deleting duplicate records from the output data.
• Tuning the performance of individual sorts.
Nsort User Guide

10
Reformatting Records

Nsort’s reformat option provides control over your record layout. You
can reformat the input data or the records to be placed in any output
file. You can specify the fields to include in the record, the order of the
fields in the record, and whether to include any derived fields or not.

The ABC Stores data warehouse receives data fields from its store that it
does not track in its data warehouse applications. When the database
administrator presorts the data prior to bulk loading, the database
administrator reformats the records to include just those fields that are
used in the data warehouse applications.

Figure 1-4 Reformat Records

StoreID Date Time ProdID Price Qty Total
106 980201 13:45 103 5.98 2 11.96
101 980201 09:04 324 2.59 6 15.54
204 980201 15:56 678 4.89 1 4.89
131 980201 13:10 324 2.59 2 5.18
106 980201 14:14 231 3.29 3 9.87
131 980201 15:21 103 5.98 4 23.92
204 980201 14:14 324 2.59 1 2.59
131 980201 15:34 324 2.59 5 12.95
106 980201 16:50 103 5.98 1 5.98
101 980201 14:01 678 4.89 3 14.67
 .
 .
 .

StoreID ProdID Date Price Qty Total
101 324 980201 2.59 6 15.54
101 678 980201 4.89 3 14.67
106 103 980201 5.98 2 11.96
106 103 980201 5.98 1 5.98
106 231 980201 3.29 3 9.87
131 103 980201 5.98 4 23.92
131 324 980201 2.59 2 5.18
131 324 980201 2.59 5 12.95
204 324 980201 2.59 1 2.59
204 678 980201 4.89 1 4.89
 .
 .
 .
Nsort User Guide

11
Deriving New Fields

Nsort allows you to derive new fields from those existing in the input
file. You can use this option to normalize the values in your database or
to change the form of the data. For example, you might need to change
the year field in your database from 98 to 1998.

Figure 1-5 Deriving New Fields

Date
980203
980108
980305
980731
990123
961026
950423
950601
940404
 .
 .
 .

Date
19980203
19980108
19980305
19980731
19990123
19961026
19950423
19950601
19940404
 .
 .
 .
Nsort User Guide

12
Selecting Records

Nsort allows you to select records for inclusion or omission from each
output file.

XYZ Stores’ individual stores sometimes mistakenly send data for the
previous day along with the current day’s receipts. The database
administrator uses Nsort’s record selection feature to include only the
receipts for the current day in the bulk load input file.

Figure 1-6 Selecting Records

StoreID Date Time ProdID Price Qty Total
106 980201 13:45 103 5.98 2 11.96
101 980131 09:04 324 2.59 6 15.54
204 980131 15:56 678 4.89 1 4.89
131 980130 13:10 324 2.59 2 5.18
106 980201 14:14 231 3.29 3 9.87
131 980130 15:21 103 5.98 4 23.92
204 980201 14:14 324 2.59 1 2.59
131 980131 15:34 324 2.59 5 12.95
106 980201 16:50 103 5.98 1 5.98
101 980130 14:01 678 4.89 3 14.67
 .
 .

StoreID Date Time ProdID Price Qty Total
106 980201 13:45 103 5.98 2 11.96
106 980201 14:14 231 3.29 3 9.87
106 980201 16:50 103 5.98 1 5.98
204 980201 14:14 324 2.59 1 2.59
 .
 .
Nsort User Guide

13
Multiple Output Files

Nsort supports the creation of multiple output files from a single sort.
This allows you to apply different criteria to each output file to meet the
needs of different parts of your application for the same data.

ABC Stores has a problem with individual stores sending incomplete or
incorrect records as part of the data to be loaded into the data
warehouse. When Nsort presorts the load data, the database
administrator uses multiple files and record selection to filter good
records into the bulk load input file and bad records into a rejects file.

Figure 1-7 Multiple Output Files1

StoreID Date Time ProdID Price Qty Total
106 980201 13:45 103 5.98 2 11.96
101 980131 09:04 324 2.59 6 15.54
204 980131 15:56 678 4.89 1 4.89
131 980130 13:10 324 2.59 2 5.18
106 980201 14:14 231 3.29 3 9.87
131 980130 15:21 103 5.98 4 23.92
204 980201 14:14 324 2.59 1 2.59
131 980131 15:34 324 2.59 5 12.95
106 980201 16:50 103 5.98 1 5.98
101 980130 14:01 678 4.89 3 14.67
 .
 .

StoreID Date Time ProdID Price Qty Total
106 980201 13:45 103 5.98 2 11.96
106 980201 14:14 231 3.29 3 9.87
106 980201 16:50 103 5.98 1 5.98
204 980201 14:14 324 2.59 1 2.59
 .
 .

StoreID Date Time ProdID Price Qty Total
101 980131 09:04 324 2.59 6 15.54
101 980130 14:01 678 4.89 3 14.67
131 980130 13:10 324 2.59 2 5.18
131 980130 15:21 103 5.98 4 23.92
131 980131 15:34 324 2.59 5 12.95
204 980131 15:56 678 4.89 1 4.89
 .
 .
Nsort User Guide

14
Deleting Duplicates

By default, Nsort retains all copies of equally-keyed records. If you
want Nsort to enforce uniqueness of key values, you can tell Nsort to
delete records with key values that match previously-processed records.

Figure 1-8 Deleting Duplicates

StoreID Date Time ProdID Price Qty Total
106 980201 13:45 103 5.98 2 11.96
101 980201 09:04 324 2.59 6 15.54
204 980201 15:56 678 4.89 1 4.89
131 980201 13:10 324 2.59 2 5.18
106 980201 14:14 231 3.29 3 9.87
131 980201 15:21 103 5.98 4 23.92
204 980201 14:14 324 2.59 1 2.59
131 980201 15:34 324 2.59 5 12.95
106 980201 16:50 103 5.98 1 5.98
101 980201 14:01 678 4.89 3 14.67
 .
 .
 .

StoreID Date Time ProdID Price Qty Total
101 980201 09:04 324 2.59 6 15.54
106 980201 13:45 103 5.98 2 11.96
131 980201 13:10 324 2.59 2 5.18
204 980201 15:56 678 4.89 1 4.89
 .
 .
 .
Nsort User Guide

15
Performance Tuning

Nsort was designed with speed in mind. With normal data distribution
(like the data distribution you find in a typical application), Nsort
chooses the most efficient performance options on its own. For the vast
majority of sort applications, you’ll never need to set Nsort’s
performance options. Nsort does, however, provide performance tuning
options for those few cases when tweaking the sort strategy can
improve performance.

Nsort provides the following performance tuning and evaluation
options:

• Memory usage.
• Number of processes.
• Sort methods.
• Disk I/O.
• Sort statistics.

For more information on configuration and performance options, refer
to Chapter 6, “Configuration and Performance”.
Nsort User Guide

16
Nsort User Guide

The Nsort Command Line 2
To invoke Nsort, you can either use the standard Nsort command line
or Nsort’s POSIX-sort compatible command line. Refer to “POSIX Sort
Compatible Command Line” on page 23 for information on using the
POSIX-sort compatible command line. The Windows version of Nsort
also accepts most command line arguments of the standard Windows
sort program - see “Windows Sort Compatible Command Line” on
page 26. When using the standard Nsort command line, you describe
your sort with Nsort’s specification language. The sort specification
language tells Nsort how to process your sort. Nsort accepts sort
specifications from a variety of sources, including the following:

• The system-wide Nsort default option file.
• A user-specific Nsort default option file.
• The Nsort environment variable.
• The command line.
• One or more sort specification files.

Wherever you choose to describe your sort, you use the sort
specification language outlined in Chapter 3, “Specification Language
Overview.” Sort specification commands can be issued in the default
files, in an environment variable, on the command line, or in the sort
specification files. All of these statement sources use the same Nsort
syntax.

18
Specifically, Nsort processes sort specifications in the following order:

1. The system-wide Nsort default options.
Nsort reads the system-wide Nsort default options and applies them
to the current sort. See “System-wide Default File” on page 21.

2. The user-specific Nsort default options.
Nsort reads the user-specific default options and applies them to the
current sort. Any user-specific default options that conflict with the
system-wide default options take precedence over the system-wide
defaults. See “User Home Directory File” on page 22.

3. Your Nsort environment variable.
Nsort reads the commands from the NSORT environment variable
and applies them to the current sort. Any environment variable
commands that conflict with the default options take precedence
over the default options. See “Environment Variable” on page 22.

4. The Nsort command line.
Nsort reads the commands from the Nsort command line and applies
them to the current sort. If the command line refers to any
specification files, the specification file commands are processed at
this time. If a command conflicts with any previously-read
commands, the last command read take precedence.

This chapter describes the Nsort command line and the various ways of
specifying your sort to Nsort. This chapter includes the following
sections:

• The Nsort command line.
• Specification files.
• Global options.
Nsort User Guide

19
The Nsort Command Line

Nsort supports two flavors of command line. The standard Nsort
command line provides access to all of Nsort’s functionality. The POSIX
sort compatible command line provides a command line similar to that
found in the standard POSIX sort.

This section discusses the Nsort command line and includes the
following subsections:

• The standard Nsort command line.
• POSIX sort compatible command line.

Standard Command Line

The standard Nsort command line can be used to describe the entire
sort or name sort specification files to describe the sort.

nsort [data definition statements...] [sort definition statements...]
[input files...] [-o output-file]

If no parameters are given, Nsort sorts the standard input as lines of
text and stores the result into the standard output.

For a list of commands accepted by Nsort on the command line, refer to
Chapter 3, “Specification Language Overview.”

Each Nsort specification language statement must appear as one
command line argument to Nsort. Statements that contain spaces,
quotes, or other characters that are interpreted by the shell need to be
appropriately quoted. For example, the following statement in a
specification file:

-derived=name= status, value=”valid”

should appear on the Nsort command line as:

‘-derived=name= status, value=”valid”’
Nsort User Guide

20
Specification Files

Sort specification files allow you to specify sorts with complex record
formats and conditional processing. With sort specification files, you
can use the same record, field, or key specifications for multiple sorts.

Nsort provides the capability to name sort specification files on the
command line or in other sort specification files. Each sort can refer to
multiple specification files.

In any of these sources, you can name text files containing some or all
of the sort definition. This is especially useful for complex record
formats, conditions, and other commonly reused statements.

The following example illustrates the inclusion of two specification files
on the Nsort command line:

-specification:record_fields.spec -spec:my_temp_files.spec

Specification files can refer to other specification files, up to a nesting
level of 20. A referenced specification file is always processed in its
entirety before returning to the referencing specification file or
command line for further statement processing.

The following example shows a specification file describing data fields
that are used in multiple sort operations:

-field=amount_due, decimal, size:12,
 past_due, decimal, size:5

For a list of commands accepted by Nsort in specification files, refer to
Chapter 3, “Specification Language Overview”.
Nsort User Guide

21
Global Options

The Nsort global options apply to every sort performed by an
individual user or on a specific system. The global options give you a
way to set your default options once rather than reiterating them for
each different sort.

This section discusses the global options and includes subsections on
the following global options:

• The Nsort system-wide default options.
• The Nsort user-specific default options.
• The Nsort environment variable.

System-wide Default File

Nsort first checks the system-wide default options file when parsing the
sort commands. If the system-wide default file is present, Nsort
processes the commands in the system-wide default file. This file is
found in the following locations:

• On HP-UX and Linux systems, /opt/nsort/nsort.params
• On Linux systems, /usr/lib/nsort/nsort.params
• On Solaris systems, /opt/ORDnsort/nsort.params
• On Windows, the Nsort installation directory.

You can use any of the standard Nsort commands in the system-wide
default options. The system-wide default options provide a convenient
way to specify commands that apply to most or all of the sorts
performed on your system.

For example, the following statement in the system-wide options file
turns off the automatic addition of derived fields:

-no_add_derived
Nsort User Guide

22
User Home Directory File

Nsort checks the user-specific default options when parsing the sort
commands. If the file $HOME/.nsortrc is present, Nsort processes the
commands in $HOME/.nsortrc.

You can use any of the standard Nsort commands in the user-specific
default options. The user-specific default options provide a convenient
way to specify commands that apply to most or all of your sorts.

Environment Variable

Nsort checks the NSORT environment variable when parsing the sort
commands. If the environment variable is present, Nsort processes the
commands in the NSORT environment variable.

You can use any of the standard Nsort commands in the NSORT
environment variable.
Nsort User Guide

23
POSIX Sort Compatible Command Line

Nsort accepts sort specifications in the style of the POSIX sort standard,
the standard sort command on Unix and Linux systems, as follows:

nsort [-b] [-d] [-f] [-i] [-k [m.n[,m.n]]] [-m] [-M] [-n] [-r] [-tc]
[-Ttempdir] [-u] [+m.n [-m.n]] input_files [-o output_file]

These arguments can be used to sort lines of text with delimited fields.
POSIX sort requires that records be lines of text (delimited by the
newline character). By default, the fields in each record are separated
by space and tab characters.

POSIX sort arguments can only appear on Nsort's command line, not in
an Nsort specification file. All Nsort definition statements except those
that define records, fields or keys can be used in addition to POSIX sort
arguments.

Flags:

-b Ignore leading blanks when finding keys.

-d Sort in “dictionary'' order. Just letters, digits, spaces
and tabs are used for comparisons.

-f Sort lowercase letters as if they were uppercase.

-i Ignore nonprintable and multibyte characters in
comparisons.

-k <w>[.<x>][bdfiMnr][<y>[.<z>][b]] Define a key from w.x to y.z.

-m Merge already-sorted input files.

-M Compare first three non-blank characters as month
names.

-n Sort initial numeric strings according to their arithmetic
value.

-o <name> Set the output file name.
Nsort User Guide

24
-r Sort in reverse (descending) order of keys.

-t<x> Use <x> as the field separator when finding key. The
default field separator is any sequence of space and tab
characters.

-T<dir> Create a temporary file in the dir directory.

-u Unique: delete all but one in each set of lines having
equal keys.

-k <w>[.<x>][b][d][f][i][M][n][r][<y>[.<z>][b]]
Define a key starting in the wth field (where 1 is the 1st
field). If x is specified, the key starts at the xth
character in the field. The d, f, i, M, n and r modifiers
can be used to specify the key type for this particular
key only (see above flags using the same characters). If
no y ending field is specified, the key field ends at end
of the record. Otherwise the end of the key is the end
of the yth field, or the zth character in the yth field.
A b modifier for the key beginning indicates that initial
blanks should be skipped when determining the
beginning of the key field. A b modifier for the key
ending indicates that blanks should be skipped when
determining the zth character that ends the field.

-z<recsz> Set longest line length. By default, this limit is 4096
characters.

+<m>[.<n>][b][d][f][i][M][n][r]
Start a key <n> characters into field <m+1>. The d, f, i,
M, n and r modifiers can be used to specify the key
type for this particular key only (see above flags using
the same characters). A b modifier indicates that initial
blanks should be skipped when determining the
beginning of the key field.
Note that lowest values of m and n are 0, whereas the w
and x used with -b start with 1.
Nsort User Guide

25
-<m>[.<n>][b] End a key at the end of the <m+1>th field, or the
<n+1>th character of the <m+1>th field. A b modifier
indicates that initial blanks should be ignored in
determing the <n+1>th character.

<files> List of input file names.

Nsort and POSIX Sort Differences

Nsort differs from POSIX sort in the following ways:

• Nsort runs much faster for all but the smallest sorts.

• Nsort does not support the -c option of POSIX sort.

• Nsort does not yet support supplementary code set characters nor
Unicode characters. The LANG environment variable is not
recognized; all character comparison is done in the C language locale.
(See environ(5)).

• Nsort always performs a “stable” sort. Nsort always outputs records
with the same key value in the same relative order in which those
records appear in the input; POSIX sort does not guarantee this.

• If no POSIX arguments are given to Nsort other than the input file(s)
and output file, Nsort will perform a sort using entire records as the
default key. This is nearly identical to POSIX sort except that Nsort
will pad comparisons between records of unequal length using the
ASCII space character, whereas POSIX sort will consider the shorter
of two otherwise equal records as having the lower sort value. The
-posix command line argument will direct Nsort to follow the POSIX
semantics for default key comparisons. The only case when the
-posix argrument is needed is when no other POSIX command line
arguments are given other than input and output files.
Nsort User Guide

26
Windows Sort Compatible Command Line

The Windows version of Nsort accepts command line sort specifications
for the Microsoft Windows sort command. The C locale must however
be specified on the Nsort command line:

nsort /L[OCALE] C [/R] [/+n] [/M kilobytes]
[/RE[CORD_BYTES] kbytes] [/CA[SE_SENSITIVE]]
[[drive1:][path1]filename1] [/T [drive2:][path2]]
[/O [drive3:][path3]filename3]

/L[OCALE] C This ``option´´ is currently required for Nsort. That is,
the C locale is the only locale option and must be
explicitly specified in order to specify a key with the
Windows sort notation. By default, the sort is case
insensitive.

/+n Indicates the character number, n, of the beginning of
the sort key in each record. For instance, /+2 specifies
that comparisons should start on the 2nd character in
each line. Comparisons start on first character
of each line by default.

/CA[SE_SENSITIVE] Specifies that Nsort should use case-sensitive
key comparisons.

 /M[EMORY] n Indicates the number of kilobytes of main memory to
use. The minimum memory size is 8000 kilobytes.

 /REC[ORD_MAXIMUM] n Indicates the maximum number of
characters per input line (default 4096, maximum
65535).

/R[EVERSE] Reverses the sort order; i.e. Z to A and 9 to 0.

 [drive1:][path1]filename1 Specifies an input file to be sorted. There can
be multiple input files. If none are specified, the
standard input is read.
Nsort User Guide

27
/T[EMPORARY] [drive2:][path2] Indicates the path of a directory to
hold the Nsort temporary file. For better temporary
file performance, multiple temporary file paths can be
specified on separate physical disks. The system
temporary directory is used if no temporary directory
is specified.

/O[UTPUT] [drive3:][path3]filename3 Specifies the file where the sorted
input is to be stored. If not specified, the data is
written to the standard output. Specifying the output
file is faster than redirecting standard output to the
same file.

Nsort and Windows Sort Differences

Nsort differs from the standard Windows sort in the following ways:

• Nsort runs much faster for all but the smallest sorts.

• Nsort currently only performs Windows style sorts using the C
locale, which must be specified on the command line as “/L C”.

• Nsort always performs a “stable” sort. That is, Nsort always outputs
records with the same key value in the same relative order in which
those records appear in the input; Windows sort does not guarantee
this.

• Nsort requires more memory to run than Windows sort.
Nsort User Guide

28
Nsort User Guide

Specification Language Overview 3
Nsort’s specification language enables you to describe your sort data
and sort operations, name the files to be used, and set configuration and
performance options.

A sort definition statement consists of an Nsort command and any
qualifiers associated with the command. Nsort commands specify a sort
action or describe an element of the sort. The qualifiers modify the
action of the command.

Sort definition statements can be specified on the command line, in sort
specification files, or in Nsort user or system default files. Nsort
commands and qualifiers are case-insensitive and can be abbreviated to
the shortest unique string.

This chapter presents an overview of what must be specified for a sort
and how it fits together. The following sections are included:

• Nsort statements (page 30).
• Processing Nsort commands (page 32).
• Data definition statements (page 30).
• Sort definition statements (page 38).
• Input, output, temporary and specification files (page 40).
• Configuration and performance options (page 42).

30
Nsort Statements

An Nsort statement that describes the keys, qualifiers, and other
characteristics of a sort contains:

• A statement start character: either a dash (-) or a slash (/).
• The statement keyword name.
• A value containing the qualifiers for this statement (optional).

A command that is not merely a boolean option needs a command
value. The value starts with either an equal sign (=) or a colon (:) and is
followed by a constant, expression, or a list of qualifiers. A qualifier has
a keyword and optionally its own value.

Some simple statements
/field: name=total, decimal, offset=10, size:10
-statistics
-summarize=total
/field: name=balance, decimal, offset=0, size:10
/omit: balance < 0

Nsort's handling of keywords is flexible:

• Keywords are recognized in any mixture of upper and lower case.
• Keywords can be abbreviated by their first few letters, as long as it is

distinguishable it from the other keywords permissible in that
context. Two or three letters are usually enough.

These examples are equivalent:
-key:offset=0, size=4, binary
-ke:o:0, si=4, bin
/key=bi, si=4, of=0

• Keywords containing more than one English words contain optional
underscores as word separators, as in file_system. Nsort
recognizes these long keywords whether or not the underscores are
included.

The statement start character (- or /) and its keyword must be adjacent;
elsewhere blanks, tabs and newlines may be added for clarity.
Comments start with either a number sign (#) or an exclamation point
(!) followed by a blank and end at the next newline character.
Nsort User Guide

31
Character Constants

Records and fields have some properties that are single character
values, for example, the terminating character of a delimited record.
Nsort has built-in identifiers for some of these characters:

You can also specify a character by enclosing it in single quotes ('), or
using one of these escape sequences:
• '\n': the newline character.
• '\t': the tab character.
• '\0nnn': the character with the octal value 0nnn.
• '\\' the backslash character (\).
• '\'' the single quote character (').

Nsort Identifier Character

backslash Backslash (\).

blank Space or blank ().

colon Colon (:).

comma Comma (,).

cr Carriage return.

dollar Dollar sign ($).

dquote Double quote (").

newline or nl Newline (\n).

null Null (\0).

pipe Vertical bar or pipe (|).

semicolon Semicolon

space Space or blank ().

squote Single quote (').

tab Tab (\t).
Nsort User Guide

32
Processing Nsort Commands

Nsort builds a sort definition from several sources. It first reads any
system-wide default statements from the Nsort system-wide default
parameter file if that file exists and is readable. You can store the tuning
parameters for your system here.

This temp_file statement could help the speed of sorts
on a system which has four temporary file systems available
-temp=/tmp1, /tmp2, /tmp3, /tmp4

Nsort next looks in the .nsortrc file in your home directory for your
personal default statements.

Nsort then reads any statements in the NSORT environment variable.

Lastly, Nsort reads the statements on the command line, processing
them from left to right. Any specification files given on the command
line are processed in order.

Any sort definition statement can appear in any of the above locations.
POSIX options are only recognized on the command line.

If there is a conflict between options specified in different sources, the
last-read option take precedence over the earlier options. An option
specified in the system-wide defaults can be overridden in your user
defaults. Options specified on the command-line or in a specification
file take precedence over the default options.

Refer to “Global Options” on page 21 for more information on setting
global options for Nsort.
Nsort User Guide

33
Data Definition Statements

Data definition statements describe the records, fields and keys used in
the sort. The data definition statements are as follows:

This section presents an overview of data definitions statements and
covers the following topics:

• Record definition (page 34).
• Field definition (page 35).
• Key definition (page 36).

For a detailed presentation of Nsort data definitions, see Chapter 4,
“Describing the Sort Data”.

Nsort Command Description

format Specifies the record definition format of the
input file.

field Describes important fields in the input file.

key Denotes the key fields in each record.
Nsort User Guide

34
Record Definition Qualifiers

Record definition qualifiers modify the behavior of the format
command. Record definition qualifiers describe the type of records
(fixed-length, variable or delimited) and any qualifiers that apply to the
records. The record definition qualifiers are as follows:

For a detailed discussion of the format specifier, see “Record Formats” on
page 46.

Nsort Command Description

size:Number Tells Nsort that the input data is organized
as fixed-length records and specifies the
length of each record as Number.

size:variable Tells Nsorthat the input data consists of
variable length records that are preceded by
a 2-byte unsigned integer that indicates the
number of remaining bytes in the record.

delimiter:C Tells Nsort that the input data is organized
as records delimited by the character C.

separator:C Indicates that record fields are separated by
the character C.

skip_blanks Tells Nsort to skip over blanks and tab
characters when comparing record keys.

minimum_size Specifies the minimum expected length for
delimited records.

maximum_size Specifies the maximum expected length for
delimited records.
Nsort User Guide

35
Field Definition Qualifiers

Field definition qualifiers describe the individual fields in the records.
The field definition qualifiers are as follows:

The following example describes the sales and region fields:

-field=sales, binary, size:8,
 region, char, size:20

For a detailed discussion of field definitions, see “Field Definitions” on
page 52.

Nsort Command Description

name Provides the field with a convenient label
that can be used later in other Nsort
commands.

position Specifies the absolute position of the field in
bytes (starting from 1).

offset Specifies the absolute offset of the field in
bytes (starting from 0).

size Specifies the exact length of the field in
bytes.

delimiter Specifies the delimiter at the end of the
field.

pad Character with which to pad the field for
comparisons (default ASCII blank).

maximum_size Specifies the maximum number of
characters for the field.

data_type Specifies whether the field contains text, a
month, a binary integer, a packed decimal,
ascii decimal, or floating point number.
Nsort User Guide

36
Key Definition Qualifiers

Key definition qualifiers describe the key fields upon which to base the
sort. The key definition qualifiers are as follows:

Nsort Command Description

name Provides a convenient label for the key or
key field.

ascending Tells Nsort to perform an ascending
(lowest-to-highest) sort.

descending Tells Nsort to perform a descending
(highest-to-lowest) sort.

number Specifies the significance of the key in the
sort.

position Specifies the absolute position of the key
field in bytes (starting from 1).

offset Specifies the absolute offset of the key field
in bytes (starting from 0).

size Specifies the exact length of the key field in
bytes.

delimiter Specifies the delimiter at the end of the key
field.

pad Character with which to pad the key field
for comparisons (default ASCII blank).

data_type Specifies whether the field contains text, a
month, a binary integer, packed decimal,
ascii decimal, or floating point number.
Nsort User Guide

37
The following example orders records by the sales field in descending
order and secondarily by the region field in ascending order:

-field=sales, decimal,
 region
-key=region
-key=sales, descend, number:1

For a detailed discussion, see “Key Definitions” on page 64.

Supported Key and Field Data Types

Nsort supports the following data types for field and key data:

For a detailed discussion of Nsort data types, see “Data Types” on
page 67.

Nsort Command Description

integer
binary

1, 2, 4, or 8 byte integer.

unsigned
unsigned integer
unsigned binary

1, 2, 4, or 8 byte unsigned integer.

packed Packed binary coded decimal.

character Fixed length or delimited ASCII character
string.

float 32-bit IEEE floating point number.

double 64-bit (double-precision) IEEE floating
point number.

decimal ASCII character string representation of a
decimal number.

month Three-letter character string specifying a
month of the year.
Nsort User Guide

38
Sort Definition Statements

Sort definition statements specify the basic commands for Nsort. The
sort definition statements specify when to perform a merge instead of a
sort, whether to delete duplicates or summarize data, which data to
include or omit in the sort, and how to lay out the records.

By default, Nsort sorts the standard input as lines of text and writes the
results to the standard output without deleting records with duplicate
key values.

The top level sort commands are as follows:

The following example uses the summarize command to produce a
summary file containing sales by region:

Generate a summary file of sales by region.
-format:size=8
-field=region, binary, size:4,
 sales, binary, size:4
-key=region
-summarize=sales

Nsort Command Description

merge Merges several sorted input files into a
single output stream.

summarize Sums the values of the specified fields to
produce summary records by key value.
Nsort User Guide

39
The top-level sort options modify the sort or merge command:

For a detailed presentation of Nsort sort options, see Chapter 5, “Sort
Definition Statements”.

Nsort Command Description

duplicates Includes records with duplicate key values in
the output stream. On by default.

no_duplicates Omits records with duplicate key values.

include Selects records with the specified criteria to
be included in the sort.

omit Omits records with specified criteria.

derived Derives a new field from the values of
existing fields.

reformat Lays out the record format for the sort.

count Sorts at most the specified number of input
records.

condition Define the named conditional expression.

specification Read commands from specification file.

add_derived Derived fields are automatically added to
records. On by default.

no_add_derived Derived fields are not automatically added to
records.

warnings Allow warning messages indicating that
unusual, non-fatal conditions have occurred,
e.g. overflow of a summary field or the
detection of excessive paging. Nsort
continues with the operation. On by default.

no_warnings Disable warning messages.
Nsort User Guide

40
File Definition Statements

The file definition statements specify the filenames of the input, output,
sort specification, and temporary files for Nsort to use during the sort.
The file definition statements are as follows:

For a detailed presentation of file definition statements, see “File System
Defaults” on page 105.

Nsort Command Description

in_file Specifies an input file. If absent, Nsort uses
the standard input. You can specify
multiple input files.

out_file Specifies an output file. If absent, Nsort
uses the standard output. You can specify
multiple output files.

temp_file Specifies a temporary file for use by the
sort. You can specify multiple temporary
files.

file_system Specifies default settings for a specific file
system.
Nsort User Guide

41
File Qualifiers

The file qualifiers specify the I/O options for a given file. The file
specification qualifiers are as follows.

For a detailed presentation of file I/O qualifiers, see “File I/O” on
page 104.

Nsort Command Description

direct Tells Nsort to use direct I/O for file access.

mapped Tells Nsort to use memory-mapped I/O for
file access.

buffered Tells Nsort to use buffered I/O for file
access.

transfer_size Specifies the file transfer size.

count Specifies the maximum number of
asynchronous I/O requests.
Nsort User Guide

42
Configuration and Performance Statements

The configuration and performance statements set memory, processor,
sort method and statistics options for a sort. The configuration and
performance statements are as follow:

Refer to Chapter 6, “Configuration and Performance” for more
information on configuration and performance commands.

Nsort Command Description

memory Specifies how much memory Nsort should
use.

threads or
processes

Specifies how many internal threads Nsort
should use for the bulk of the sort
workload.

method Tells Nsort which sort strategy to use.

statistics Tells Nsort to provide statistics on the sort.

no_statistics Tells Nsort not to provide statistics on the
sort. On by default.
Nsort User Guide

43
Method Qualifiers

The sort method qualifiers tell Nsort to use the specified sort strategy.
The sort method qualifiers are as follows:

Refer to “Sort Methods” on page 100 for more information on sort
methods.

Nsort Command Description

record Tells Nsort to move complete records as it
sorts.

pointer Tells Nsort to move only keys as it sorts,
using pointers to locate the original records.

merge Tells Nsort to use a merging sort strategy.

radix Tells Nsort to use a radix sort strategy.

no_radix Tells Nsort not to use a radix sort strategy.
On by default.

hashing Tells Nsort to use key hashing in its sort.

no_hashing Tells Nsort not to use key hashing in its
sort. On by default.
Nsort User Guide

44
Nsort User Guide

Describing the Sort Data 4
Nsort data description statements define:

• The record type, including size or delimiter.
• The types and locations of any fields that you use as keys or in

expressions or conditions.
• The order of key fields and the direction of the sort.

This section discusses Nsort’s data description statements and includes
the following sections:

• Record format statements (page 46).
• Field definition statements (page 52).
• Key definition statements (page 64).
• Supported data types (page 67).

46
Record Formats

The -format statement defines whether a record is fixed-size, variable
(length-prefix) or delimited by a character constant. For delimited
records, you can also specify field separators, and minimum and
maximum record sizes.

-format= size:{number | variable} |
{[delimiter:C] [,separator:{C|whitespace}]
[,default:{C|number|character_string}] [,skip_blanks]
[,minimum_size:number] [,maximum_size:number]}

The default record format is lines of text delimited by a newline, with
the fields separated by whitespace (blanks and tabs).

This section discusses record formats and includes the following
subsections:

• Fixed size records (page 47).
• Variable (length-prefix) records (page 48).
• Delimited records (page 49).

• Field separators (page 49).
• Default field value (page 50).
• Skipping blanks (page 50).
• Minimum and maximum sizes (page 51).
Nsort User Guide

47
Fixed Size Records

Fixed-size records are all the same size. To specify fixed-size records,
use the size:number qualifier.

-format=size:30 # Each is 30 bytes long

Figure 4-1 Fixed Size Records

All fields in a fixed-size record must be fixed-size. Only fixed-size
records may contain binary integer, packed decimal and floating-point
fields.

The maximum size of a fixed-size record is 65,535 bytes (or 8 megabytes
for the Windows versions of Nsort).

John Smith M10/03/38
Mary Jones F03/09/68
William Evert M05/20/58
Jennifer Small F08/19/42
Ben Liu M06/23/68
Alfred Hollingsworth M02/25/52
Jackie Jacobs F12/24/75
Susan Hollings F05/29/51
 .
 .
 .
Nsort User Guide

48
Variable (Length-Prefix) Records

Variable, length-prefix records are records of varying lengths with a
two-byte size at the beginning of each record. To specify variable-length
records, use the size:variable qualifier.

-format=size:variable

The size field is an unsigned integer that may range from 0 to 65,535. It
is treated as a prefix to the record rather than as part of the record;
therefore it is not included in the record length nor can it be accessed as
a field or key. The total record size, including the size field, varies from
2 to 65,537 bytes.

Figure 4-2 Variable Length Records

The following functionality is not supported with variable (length-
prefix) records:

• record selection

• reformatting

• derived fields

1061034598020113:14:45103455 YPX5.982 10133345
98013113:16:04324564 SILVE2.596 20446325 980131
13:17:44 678554 MO 4.891 13132645 98013013:10:29
324564 TRIEC2.592 1061034598020114:14:45 231234 XA
3.293 1313264598013015:21:29103455 FLM5.984

2044632598020114:14:47324564 REALTE2.591
1313264598013115:34:30324564 PQL2.595 10610345 980201

16:50:21103455 ROLK5.981 1013334598020114:01:04
678544 IWIL4.893

11.96

15.54
4.89

5.18
9.87 23.92

2.59
12.95

5.98
14.67

0x0029 0x0031
0x0028

0x0031
0x0026

0x0031
0x0033 0x0029

0x0030

0x0030
0x0029 1061034598020113:14:45 5.982103455 YPX
Nsort User Guide

49
Delimited Records

Delimited records can vary in size and are terminated by a single
character. To specify delimited records, use the delimiter:character
qualifier. Two examples follow:

-format=delimiter:newline # lines of text, the default format

-format=delimiter:null # ASCII NULL terminated “lines”

Figure 4-3 Delimited Records

The default maximum size for a record is 4,096 bytes. The maximum
record size allowed can be increased up to 65,535 bytes.

Field Separators

The separator qualifier can be used to specify the field separator
character.

-format=separator:comma # lines of text (by default) with
 # fields separated by commas

A field separator can either be whitespace (a maximal sequence of
adjacent blanks or tabs) or a single character.

Whitespace separated fields include their preceding whitespace; any
trailing whitespace is part of the subsequent field. Whitespace is the
default field separator for delimited records.

John Smith,M,10/03/38
Mary Jones,F,03/09/68
William Evert,M,05/20/58
Jennifer Small,F,08/19/42
Ben Liu,M,06/23/68
Alfred Hollingsworth,M,02/25/52
Jackie Jacobs,F,12/24/75
Susan Hollings,F,05/29/51
 .
 .
 .
Nsort User Guide

50
A single-character separator is not included in the field. Two adjacent
separator characters, or a separator character at the beginning or ending
of the record denote empty fields.

Default Field Value

A default field value can be specified using the default qualifier. This
default is only used in the case that:

• the fields are whitespace separated

• a reformat statement is specified

• and some of the fields specified in the reformat are empty. (For
instance, there are not that many fields in the record, or the
beginning and ending positions of the field are defined in such a way
that the field is empty.)

If the above conditions are met, empty fields cannot be reliably
represented with whitespace separators (since these separators can
consist of multiple blank and tab characters). In this case, the character
string specified by the default qualifier will be substituted for the non-
existent field in the reformatted record. In the absence of a default
qualifier, the string “*NULL*” will be used.

-format:default=”*Error*” # Use *Error* as default field value
 # for reformats

Skipping Blanks

The skip_blanks qualifier specifies that the starting and ending
positions of separated fields begin after any leading blanks that would
otherwise be included in those fields.
Nsort User Guide

51
Minimum and Maximum Record Sizes

You can specify minimum and maximum sizes for delimited records
using the minimum_size:number and maximum_size:number qualifiers.
If you provide conservative approximations of these values, Nsort can
more accurately calculate its memory needs. Note that a run-time error
will occur if Nsort encounters a record that is smaller than the
minimum or larger than the maximum.

The following example specifies newline-delimited records between 11
and 80 bytes long:

-format=delim:nl, minimum_size:11, maximum_size:80

The following example specifies a NULL-delimited records with a
minimum size of 20 bytes:

-format=delim:null, min:20

The default minimum size is the position of the last byte of all declared
fixed-sized fields, plus one byte for the record delimiter. The default
maximum size is 4,096 bytes. The maximum can be increased up to
65,535 bytes.

The following example specifies newline-delimited records with a
maximum record size of 1000 bytes. Nsort will use a minimum record
size of 22 bytes, based on the sizes of the specified fields:

-format=delim:nl, max=1000
-field= city, position=12, size=10,
 state, position=2, size=3
Nsort User Guide

52
Field Definitions

Each field statement identifies one or more record fields for later use in
expressions, keys, summaries, and reformats. To specify a field, describe
its position, size, and type information.

-field= [name=]field_name [,{position|offset}: number]
[, {size:number|delimiter:character }] [, datatype] [, pad:character]
[,{maximum_size | minimum_size}:number] [, ...]

Nsort supports three different types of fields: fixed-size; delimited and
separated. The following table illustrates how the beginning and ending
positions for these different field types are defined.

Field statements are additive. Multiple fields can be defined in one or
more field statements. For instance, the following definition of three
separated fields:

-field=first,second,third

is equivalent to the following three field statements:

-field=first -field=second -field=third

Field Type Beginning Position Ending Position

fixed-size absolute byte position
from beginning of
record

implicitly from the
fixed size of the field

delimited absolute byte position
from beginning of
record

delimited by record
delimiter or field
separator

separated relative to a field
separator

relative to a field
separator
Nsort User Guide

53
This section discusses field definitions. The following qualifiers are
presented:

• Name (below).
• Size (below).
• Delimiter (next page).
• Position (page 55).
• Offset (page 63).
• Maximum size (page 63).
• Pad (page 63).
• Fold_upper and Fold_lower (page 63).

Field Name

Fields must be specified with a name qualifier. The name can be used in
subsequent expressions or key or summarize statements. Field names
start with a letter, and can contain letters, digits, and underscores (_).

[name=]field_name

The name= prefix is optional, and is useful for specifying field names
that are also keywords in the Nsort specification language. E.g.:

Define fields “name”, “height”, and “size”
-field= name=name, size=24,
 height, decimal, size:4,
 name=size, decimal, size:2
-key= name=size

Size Qualifier

Fixed-size fields are specified with a size qualifier.

size:number

The specified size must be greater than 0.

Any position or offset qualifier for a fixed-size field indicates the byte
position of the field relative to the beginning of the record. All fields in
a fixed-size record must be fixed-size.
Nsort User Guide

54
Separated fields are the norm for delimited records. Fixed-size fields
can also be defined for delimited records with following caveats:

• A run-time error will result if the record is not large enough to
contain all fixed-size fields.

• Fixed-size fields in a delimited record may not appear in a record
reformat.

Delimiter Qualifier

A delimited field begins at a fixed byte position in the record and ends
at the first occurrence of character or at the end of the record.

delimiter:character

The delimiter is not included in the field. A field is empty if it starts
with the delimiter. A run-time error will result if a delimited record is
not large enough to contain the first byte of a delimited field.

Delimited fields cannot be included in a record reformat, and are not
supported for fixed-size records.

Fields which start after a field separator should be defined as separated
fields using the position qualifier instead of the delimiter qualifier.
Nsort User Guide

55
Position Qualifier

The position qualifier defines the beginning of the field. The meaning of
the position number depends on whether a size or delimiter qualifier is
specified for the field.

Byte-Position Fields

If a size or delimiter qualifier is specified for the field, the position
number specifies the byte number in the record.

position:number

A field at the beginning of the record has a position of 1. The position
cannot be greater than the size of a record. A run-time error will occur
if a delimited record is not large enough to contain a byte-position field.

In the following example defines a 4-byte unsigned binary number
beginning at the fifth byte of the record:

-format=size:12
-field=unix_date,position:5,binary,unsigned,size:4

If the position is not specified for a field, it is assumed to immediately
follow the previously defined field. Thus if all fields in a record are
defined in order, the positions of the fields need not be explicitly
specified. The following example shows position-implicit field
specifications for a fixed-size record.

-format=size:12
-field=ip_addr,binary,unsigned,size:4,
 unix_date,binary,unsigned,size:4,
 page_id,binary,unsigned,size:4
Nsort User Guide

56
Separated Fields

The position qualifier for a separated field specifies the field’s starting
and ending range. (The field separator character can be defined in a
format statement.) In addition to the field number, an optional field end
and field type can be specified:

position: field_no[.char_no][bdfiMnr][-[field_no[.char_no][b]]]

Examples:

-field=amount,pos=1n # “amount”, 1st field, and is ascii number
-field=store,pos=3 # “store”, 3rd field, is character string

The beginning and ending positions (and any modifiers) in a position
qualifier cannot contain any whitespace characters (i.e. they must be
specified contiguously). This is unlike other parts of the Nsort sort
specification language where space or tab characters may appear
between keywords.

Separated Fields vs. Input Fields

The position qualifier can be used to define a separated field that is
either a whole field (separated by field separators) in each input record,
a portion of an input record field, or multiple input record fields. Hence
the term input fields will be used here to refer to the fields separated by
field separators in the input records, and separated fields as the potential
input field fragments or groups that are defined with a field statement
and position (or offset) qualifier.
Nsort User Guide

57
Beginning Field Number

The beginning field number used by itself defines whole input fields.
The following example defines the third, fifth, and sixth fields separated
by the pipe (‘|’) character:

-format=separator:pipe
-field=street,position:3,
 state,position:5,
 zip_code,position:6

If the position is not specified for a field, it is assumed to immediately
follow the previously defined field. The positions of fields need not be
explicitly specified if all fields in a record are defined in order. The
following example shows position-implicit, separated fields:

-format=separator:pipe
-field=customer_name,
 telephone_no,
 street,
 city,
 state,
 zip_code

The char_no can be used to specify the beginning character of the
separated field.

-field=account_no,position:1.2 # starts at 2nd character of
 # 1st field

-field=balance,position:4.3 # starts at 3rd character of
 # 4th field

If the char_no is past the end of the input field specified by field_no, the
separated field will begin at the field separator or record delimiter
which follows the input field. Depending on the ending field definition,
this may cause the separated field to be empty.

Following the tradition of POSIX sort, whitespace-separated fields
include any preceding whitespace characters by default. This behavior
can be overridden by specifying skip_blanks in the format statement.
For all other separators, the first character of a field is the first character
after the preceding separator character or, for the first field, the first
character of the record.
Nsort User Guide

58
If the b modifier is used with a char_no or if the skip_blanks qualifier
has been specified in the format statement, the char_no position is
relative to the first non-blank character in the field. Two examples
follow:

-field=client_name,position:3.2b # starts at 2nd character after
 # 1st non-blank character in
 # the 3rd field

-format=skip_blanks
-field=client_name,position:3.2 # starts at 2nd character after
 # 1st non-blank character in
 # the 3rd field
Nsort User Guide

59
Ending Field Number

The ending field number is optional. In its absence the end of the
separated field is the end of the beginning field number. An ending
field_no without an associated char_no defines the field as ending at the
end of input field field_no. For example, the following field definitions
are equivalent:

-field=customer,position:3.2

-field=customer,position:3.2-3

If an ending char_no is specified, it indicates the last character of the
separated field. That is, the end character is included in the field rather
than being the first character after the end of the field. For example:

-field=zip,position:4.1-4.5 # first 5 chars of 4th input field
-field=state,position:3.1-3.2 # first 2 chars of 3rd input field

If the b modifier is used with the ending position (or skip_blanks is
specified in the format statement) the ending char_no is relative to the
first non-blank character of the ending field.

If the b modifier is used with the ending position (or skip_blanks is
specified in the format statement) and an ending char_no is not
specified, then:

• if whitespace field separators are used, the b modifier is ignored

• if a single character field separator is used, the b modifier (or
skip_blanks) causes blanks at the end of the input field to be
dropped from the separated field

Open-ended Fields

Open-ended separated fields can be specified just using an ending
hyphen:

-field=position:3- # 3rd field and up to record delimiter

Open-ended fields may only be specified in a reformat statement as the
last field.
Nsort User Guide

60
Examples

Given the following record with whitespace-separated fields:

red blue tan pink

the following field directives will result in the following separated field
contents for the above record:

Field Directive Contents Comments

-field=col2,position:2 “ blue” whitespace separated
fields include beginning
whitespace by default

-format:skip_blanks
-field=col2,position:2

“blue”

-field=col2,position:2b “blue”

-field=col2,position:2.1-2.2 “ ” whitespace separated
fields include beginning
whitespace by default

-format:skip_blanks
-field=col2,position:2.1-2.2

“bl”

-field=col2,position:2.1b-2.2b “bl”

-field=col2,position:2.1b-2.2 “” ending position is before
beginning position,
therefore the separated
field is empty

-field=col2,position:1-2 “red blue” 1st through 2nd fields

-field=col2,position:1b-2 “red blue” blanks not skipped
between input fields

-field=col2,position:3b- “tan pink” third input field and up
to record delimiter
Nsort User Guide

61
Given the following record with pipe-separated fields (declared with
-format=separator:pipe):

red| blue |tan|pink

the following field directives will result in the following separated field
contents for the above record:

Field Directive Contents Comments

-field=col2,position:2 “ blue ”

-format:skip_blanks
-field=col2,position:2

“blue” blanks skipped at
beginning and end

-field=col2,position:2b-2b “blue” blanks skipped at
beginning and end

-field=col2,position:2.1-2.2 “ b”

-format:skip_blanks
-field=col2,position:2.1-2.2

“bl”

-field=col2,position:2.1b-2.2b “bl”

-field=col2,position:2.1b-2.2 “b“ ending position is same
as beginning position,
therefore the separated
field is one character

-field=col2,position:1-2 “red| blue ” 1st through 2nd fields,
separators not skipped

-format:skip_blanks
-field=col2,position:1-2

“red| blue” trailing blank is skipped

-field=col2,position:3- “tan|pink” third input field and
beyond

-field=col2,position:1.6-2 “| blue ” beginning char_no
bumps up against field
separator
Nsort User Guide

62
POSIX-Style Key Types

Many POSIX-style modifiers can be used to specify how the separated
field will be interpreted in a key comparison. Unlike the b modifier,
these modifiers do not change where the field starts or ends.

An example follows:

-field=client,position:3fr # client is 3rd field
-key=client # reverse order, ignore case

Modifier Description

d Use “dictionary” order. All characters except letters,
digits, tabs and blanks are ignored.

f Fold lower case characters into the equivalent upper
case character. E.g. ‘z’ will be sorted the same as ‘Z’.

i Ignores characters less than ASCII 040 (octal) or
greater than 0176.

M The field contains a month name for comparison
purposes. Any leading white space is ignored. If the
field begins with the first three characters of a
month in uppercase or lowercase, comparisons are
made according to month order. Any invalid month
names are compared as less than JAN.

n The field is a number consisting of optional blanks,
an optional ‘+’ or ‘-’ sign, zero or more digits, an
optional decimal point, and zero or more digits. An
exponent may also be included with “n” separated
fields (e.g. 3.76e10). Note that exponents are not
recognized with POSIX sort keys (defined on the
Nsort command line with -k, and +w.z -y.z).

r Reverses the order of comparison so that keys
appear in the output in descending order.
Nsort User Guide

63
Offset Qualifier

The offset qualifier is the same as the position qualifier, except that the
first byte, field, or character is always specified as 0, rather than 1. A
position of N is the same as an offset of N-1. For example, the following
two field definitions are the same:

-field=zip,position:4.1-4.5
-field=zip,offset:3.0-3.4

Maximum Field Size

The maximum_size:number qualifier specifies maximum number of
characters in a separated field.

“cost” field is ascii number with no more than 10 characters
-field=cost,decimal,maximum_size:10

This qualifier can be used to specify the maximum precision of a
separated field that is the target of a summarize statement (see
“Summarizing Separated Fields” on page 78).

Pad Qualifier

Nsort uses the pad character when comparing character strings of
different sizes. The comparison is made as if the shorter string were
appended with the pad character to form a string of equal size. The pad
qualifier changes the pad character from ASCII blank to the value
character. The pad character is ignored for non-character data types.

pad:character

Fold_Upper and Fold_Lower

When Nsort compares character strings, it can be directed to either
convert lower case ASCII characters to upper case by using fold_upper,
or convert upper case ASCII characters to lower case by using
fold_lower. Fold_upper and fold_lower are ignored for non-character
data types.
Nsort User Guide

64
Key Definitions

The key definition describes the key fields used in each sort, the
direction of the sort on each key field, and the relative significance of
each key field. If you do not define any key fields, the entire record is
sorted as a single character string in ascending order.

This section discusses key definition statements and includes the
following subsections:

• Key fields in Nsort.
• Key sort direction.
• Key number.

Key Fields

Nsort supports two types of key descriptions, named keys and
described keys. This section discusses key descriptions and includes the
following subsections:

• Named keys.
• Described keys.
Nsort User Guide

65
Named Keys

Nsort keys are fields with two optional properties as follows:

• An indicator of whether the key is to be sorted ascending or
descending.

• A number specifying the relative ordering priority among multiple
keys.

-key= [name=] field_name [, {ascending|descending}] [, number:number]

Nsort obtains this key field's placement, size, and other information
from the previously defined field field_name. The optional name=
qualifier may be used to eliminate the ambiguity that arises when
field_name matches the first letters of a potential keyword in a -key
statement, as in the following example:

"name=" is necessary here to distinguish
the field named "mon" from the type "month"
-key=name:mon

Described Keys

Instead of using named key fields, you can roll the field definition into
the key definition as follows:

-key= [{position|offset}: number] [, {size:number|delimiter:character}]
[, datatype] [, pad:character] [, {ascending | descending}]
[, number:number] [, ...]

Refer to “Field Definitions” on page 52 for information on describing
key fields. A described key example follows:

-key=position:2nr # first sort on 2nd input field as a
 # decimal number in reverse order,
-key=position:4f # then 4th field as string ignoring case,
-key=position:5-6 # then 5th and 6th fields
Nsort User Guide

66
Key Sort Direction

By default Nsort performs an ascending sort (orders a key field from
low values to high ones). You can indicate descending to reverse the
sort order of a key; Nsort then sorts this key field from high values to
low ones.

In the following example records are ordered by the second separated
field in descending order:

-key=position:2,descending

Key Number

By default, the first key field defined is the most significant; subsequent
key fields are used only when the previous key fields are equal. You can
use number:number qualifiers to override the default behavior. The key
field with the lowest number value is the most significant, the one with
the second lowest is next, and so on. Any remaining key fields are used
in order of their definition.

The following example orders records primarily by the region field in
ascending order, and secondarily by the sales field in descending
order:

-field=sales, decimal,
 region
-key=region
-key=sales, descend

The following example orders records primarily by the sales field in
descending order, and secondarily by the region field in ascending
order:

Order records primarily by the sales field in descending
order, and secondarily by the region field in ascending order.
-field=sales, decimal,
 region
-key=region
-key=sales, descend, number:1
Nsort User Guide

67
Data Types

Nsort supports the following numeric and character data types:

• Signed integer (integer or binary).
• Unsigned integer (unsigned integer or unsigned binary).
• Packed decimal.
• Character (character).
• Floating point (float).
• Double-precision floating point (double).
• Decimal (decimal).
• Month (month).
• Unsigned bit field (bit).

Binary Integer Data Types

The integer and binary types denote a two's-complement number that
is 1, 2, 4, or 8 bytes long. It is a signed number unless you include the
unsigned modifier.

-format=size:16
sales: an 8-byte signed integer at offset 4
-field=sales, bin, offset:4, size:8
salary: a 4-byte unsigned integer at offset 12
-field=salary, unsigned, bin, off:12, siz:4

An integer field is only allowed with fixed-size or length-prefix records.

Packed Decimal Type

The packed type denotes a packed binary coded decimal number. Each
digit is represented in a 4-bit nibble with a value from 0 to 9. The size
is the number of nibble-pairs or bytes in the field. The last nibble
contains a sign indicator with one of the following hexadecimal values:
A (+); B (-); C (+); D (-); E (+); or F (absolute, no sign).

-format=size:16
sales: a 7-digit (4-byte) packed decimal number at offset 2
-field=sales, packed, offset:2, size:4

The packed field is only allowed with fixed-size or length-prefix records.
Nsort User Guide

68
Bit Type

The bit type is a sequence of 1 to 8 bits, all contained in a single byte.
Bit types are always unsigned and are only allowed with fixed-size or
length-prefix records. The position or offset of a bit type indicates the
position of the byte containing the bit type, plus the bit number of the
high-order bit of the field. The size option can be used to specify bit
type greater than one bit in length.

-format=size:16
-field=flag1,position:5.1,bit # low-order bit of fifth byte
-field=flag2,position:5.8,size=4,bit # 4 high-order bits, fifth byte

Character Data Type

A character string is a sequence of unsigned bytes of any size from 1 to
the size of the record. Strings can be of a fixed or varying size. When
two character strings of different sizes are compared, the result is as if
the shorter string were filled out with the pad character (default: ASCII
blank) until it has the same size as the longer string. The pad may be
changed from ASCII blank to any other character by using the
pad:character qualifier.

employee: a 20-byte character field at position 11
-field=employee, char, pos:11, size:20

street: a null-terminated character string at offset 2
-field=street, char, off:2, del:null

20 charracter key mapped to upper case
-key:char,position=1,size=20,fold_upper

EBCDIC

The ebcdic statement directs Nsort, when comparing character keys at a
fixed position and size, to convert ASCII characters to their
corresponding EBCDIC characters (using EBCDIC code page 037) to
determine the collation order. The ebcdic statement specifies that all
character comparisons should map ASCII to EBCDIC. Ebcdic can be
used with the fold_upper or fold_lower character field qualifiers.
Nsort User Guide

69
use EBCDIC colllating sequence for two character keys
-format:size=20
-ebcdic
-key:char,position=1,size=6
-key:char,position=12,size=4

The ebcdic statement only affects the collation order of character keys
that are declared with a fixed position and size. Other character keys
are unaffected.

Floating Point Data Type

A float is a 32-bit IEEE 754 data type. It always has a size of 4, and
therefore need not have an explicit size specification.

-format=size:14
Xcoordinate: a 4-byte floating point at offset 10
-field=Xcoordinate, offset:10, float

The float data type is only allowed with fixed-size or length-prefix
records.

Double-Precision Floating Point Data Type

A double is a 64-bit IEEE 754 data type. The double type always has a
size of 8, and therefore need not have an explicit size specification.

-format=size:16
sales: an 8-byte floating point at offset 4
-field=sales, offset:4, double

The double data type is only allowed with fixed-size or length-prefix
records.

Decimal Data Type

A decimal is a character string containing an ASCII representation of a
number in the form:

[+|-][digits][.][digits][{E|e}[+|-][digits]]
Nsort User Guide

70
The number can be preceded by spaces and is terminated by the end of
the string or an unexpected (e.g. non-digit, decimal point) character. A
string which is too short (e.g. "+", ".") or starts with unexpected
characters (e.g. "+r") is treated as zero.

Month Data Type

A month contains a three letter abbreviation for a month name and is
ordered according to the months of the year; e.g. jan or Feb. The
locale(5) database holds the standard names. Case distinctions are
ignored for month types. Month values whose first three letters do not
match those abbreviations sort as less than January.

mm: a month starting offset 4
-field=mm, offset:4, month, size:3
Nsort User Guide

Sort Definition Statements 5
Nsort sorts, merges or summarizes. In sort mode, Nsort takes an input
file and sorts it by key value. In merge mode, Nsort takes multiple pre-
sorted input files and produces one sorted output file. In summarize
mode, Nsort takes an input file and produces a summary file with
selected values subtotaled by key value.

While Nsort works, it can transform records. You can rearrange or drop
fields, add new fields with derived statements, or produce subtotals.

This chapter describes the basic sort operations provided by Nsort and
includes the following sections:

• Sorting records (page 72).
• Merging sorted record sets (page 74).
• Summarizing record sets (page 76).
• Duplicate handling (page 79).
• Transforming data (page 80).
• Selecting records (page 81).
• Reformatting records (page 84).
• Adding fields (page 90).
• Expressions (page 93).
• Conditions (page 95).

72
Sorting

Sort takes one or more unordered input files and sorts them by text line
or key value into one or more output files. Sort is the Nsort’s default
mode; in the absence of another mode specification (merge or
summarize), Nsort sorts the input.

Figure 5-1 Sort Operation

-field=StoreID,Date,Time
-key=StoreID
-key=Date
-key=Time

StoreID Date Time ProdID Price Qty Total
106 980201 13:45 103 5.98 2 11.96
101 980201 09:04 324 2.59 6 15.54
204 980201 15:56 678 4.89 1 4.89
131 980201 13:10 324 2.59 2 5.18
106 980201 14:14 231 3.29 3 9.87
131 980201 15:21 103 5.98 4 23.92
204 980201 14:14 324 2.59 1 2.59
131 980201 15:34 324 2.59 5 12.95
106 980201 16:50 103 5.98 1 5.98
101 980201 14:01 678 4.89 3 14.67
 .
 .
 .

StoreID Date Time ProdID Price Qty Total
101 980201 09:04 324 2.59 6 15.54
101 980201 14:01 678 4.89 3 14.67
106 980201 13:45 103 5.98 2 11.96
106 980201 14:14 231 3.29 3 9.87
106 980201 16:50 103 5.98 1 5.98
131 980201 13:10 324 2.59 2 5.18
131 980201 15:21 103 5.98 4 23.92
131 980201 15:34 324 2.59 5 12.95
204 980201 15:56 678 4.89 1 4.89
204 980201 14:14 324 2.59 1 2.59
 .
 .
 .
Nsort User Guide

73
Nsort provides many options to customize your sort, including the
following:

• Record selection.
You can select records to include or omit from the sort.

• Record reformat.
Nsort provides the reformat option to project the input records into
any form you choose. You can specify which fields to include in the
sort and the order in which those fields appear.

• Duplicate key processing.
You can select whether to delete or include records with duplicate
key values in the sort. The default is to include them.

• Field summarizing.
Field values can be subtotaled by key value.

• Derived fields.
You can derive new fields from the values of existing fields.

• Derived fields.
You can derive new fields from the values of existing fields.

• Key match detection.
You can specify that a character be prepended to each output record
that indicates whether the keys in the record match the same keys in
the previous output record.
Nsort User Guide

74
Merging Sorted Sets

Merge takes several sorted input files and merges them to produce one
or more sorted output files. To specify merge mode, use the merge
command.

-merge

Nsort provides the following options to customize your file merging:

• Duplicate key processing.
You can select whether to delete or include records with duplicate
key values in the sort. The default is to include them.

• Field summarizing.
Field values can be subtotaled by key value. (Field summarizing
during a merge is currently supported only for fixed-size records.)

• Multiple output files.
Multiple output files can be specified, each with its own record
selection and reformat statements.

Figure 5-2 on page 75 shows how the merge operation combines sorted
input files from the following command statements:

-merge
-field=StoreID,
 Date,
 Time
-key=StoreID -key=Date -key=Time
Nsort User Guide

75
Figure 5-2 Merge Operation

StoreID Date Time ProdID Price Qty Total
101 980201 09:04 324 2.59 6 15.54
101 980201 14:01 678 4.89 3 14.67
106 980201 13:45 103 5.98 2 11.96
106 980201 14:14 231 3.29 3 9.87
106 980201 16:50 103 5.98 1 5.98
131 980201 13:10 324 2.59 2 5.18
131 980201 15:21 103 5.98 4 23.92
131 980201 15:34 324 2.59 5 12.95
204 980201 15:56 678 4.89 1 4.89
204 980201 14:14 324 2.59 1 2.59
 .
 .
 .

StoreID Date Time ProdID Price Qty Total
101 980201 09:04 324 2.59 6 15.54
204 980201 15:56 678 4.89 1 4.89
 .
 .

StoreID Date Time ProdID Price Qty Total
101 980201 14:01 678 4.89 3 14.67
106 980201 13:45 103 5.98 2 11.96
106 980201 14:14 231 3.29 3 9.87
131 980201 15:34 324 2.59 5 12.95
 .
 .

StoreID Date Time ProdID Price Qty Total
106 980201 16:50 103 5.98 1 5.98
131 980201 13:10 324 2.59 2 5.18
131 980201 15:21 103 5.98 4 23.92
204 980201 14:14 324 2.59 1 2.59
 .
 .
Nsort User Guide

76
Summarizing Data

The summarize command can be used to create summary files
containing record fields subtotaled by key value, suitable for loading
into summary tables for a data warehouse.

-summarize=field_name [, field_name ...]

A summarize statement names fields that will be subtotaled by key
value. Records with duplicate keys will be deleted. For each unique
key value in the input, there will be one record in the output. Before
deleting a record with a duplicate key value, Nsort will add each value
in the summarized fields to the corresponding fields in the surviving
record.

Figure 5-3 Summarize Data

StoreID Date ProdID Qty Total
106 980201 103 2 11.96
101 980201 324 6 15.54
204 980201 324 1 4.89
131 980201 324 2 5.18
106 980201 103 3 17.94
131 980201 103 4 23.92
204 980201 324 1 2.59
131 980201 324 5 12.95
106 980201 103 1 5.98
101 980201 678 3 14.67
 .
 .

StoreID Date ProdID Qty Total
101 980201 324 6 15.54
101 980201 678 3 14.67
106 980201 103 6 35.88
131 980201 103 4 23.92
131 980201 324 7 18.13
204 980201 324 2 5.18
 .
 .
Nsort User Guide

77
Summarized fields must be numeric (binary, packed, decimal, float, or
double). They can not overlap any key fields.

The following example summarizes quantities and sales for each unique
store-date-product combination:

-field=StoreID, character,
 Date, character,
 ProdID, character,
 Qty, decimal,
 Sale, decimal
-key=StoreID -key=Date -key=ProdID
-summarize=Qty,Sale

The following example assumes fixed-length records, and generates a
subtotal of sales for each region:

-format=size:8
-field=sales, binary, size:4,
 region, binary, size:4
-key=region
-summarize=sales

Before adding the summarized field values to the surviving record,
Nsort checks to see if any of the additions will overflow (the result will
be too large to fit into the field's size). If so, then Nsort does the
following:

• Does not delete the record with duplicate key(s). This may allow both
records to appear in the output.

• Does not perform any of the summarize additions for the two
records.

• Displays a message warning that a summarize addition overflowed
and that duplicate-keyed values may appear in the output (unless the
-no_warnings option has been used to turn off warnings).
Nsort User Guide

78
Summarizing Separated Fields

Separated fields that are summarized may need to change sizes in order
to hold their summarized values. Nsort automatically increases the
temporary, internal size of summarized, separated fields by 10 bytes in
order to reduce the occurrence of overflows. This efficiently allows most
summarizations to succeed. If this is not appropriate for your
application, the maximum_size:number field option (see “Maximum
Field Size” on page 63) can be given. Nsort then temporarily expands
those summarized fields to their specified maximum size. For example:

summarize charge amounts by account
-format=separator=comma
-field=account,decimal,
 amount,decimal,maximum_size=22
-key=account
-summarize=amount

The above example will expand the “amount” field to be 22 bytes,
perform the sort and summarizations, and then trim away unneeded
bytes resulting in “amount” fields which are only as large as necessary.
Nsort User Guide

79
Duplicate Handling

Nsort's default duplicate handling action is to retain all records that
have the same key values, returning them in the order they appear in
the input (this is sometimes called a ``stable´´ sort). Alternatively, you
can direct Nsort to delete all but one record for each set of unique key
values.

If no_duplicates is specified then the output will not contain multiple
records that have the same key fields; all but one of identically-keyed
records will be deleted. In a summarizing sort, duplicates must not be
specified, and no_duplicates is ignored.

The following example includes only one record for each store/date
combination:

-field=StoreID, size:3, character,
 Date, size:6, character,
 ProdID, size:3, character
-key=StoreID -key=Date
-no_duplicates

Figure 5-4 Deleting Duplicates

StoreID Date Time ProdID Price Qty Total
106 980201 13:45 103 5.98 2 11.96
101 980201 09:04 324 2.59 6 15.54
204 980201 15:56 678 4.89 1 4.89
131 980201 13:10 324 2.59 2 5.18
106 980201 14:14 231 3.29 3 9.87
131 980201 15:21 103 5.98 4 23.92
204 980201 14:14 324 2.59 1 2.59
131 980201 15:34 324 2.59 5 12.95
106 980201 16:50 103 5.98 1 5.98
101 980201 14:01 678 4.89 3 14.67
 .
 .
 .

StoreID Date Time ProdID Price Qty Total
101 980201 09:04 324 2.59 6 15.54
106 980201 13:45 103 5.98 2 11.96
131 980201 13:10 324 2.59 2 5.18
204 980201 15:56 678 4.89 1 4.89
 .
 .
 .
Nsort User Guide

80
Transforming Data

If you are sorting, merging, or summarizing data, Nsort can transform
the data during processing. Nsort can alter record layout, filter data for
output files, and derive new fields from existing fields.

Data transformations are described in the following sections:

• Filtering data for output files (page 81).
• Limiting the number of records read (page 83).
• Reformatting records (page 84).
• Creating new fields derived from existing fields (page 90).
• Expressions (page 93).
• Conditions (page 95).
Nsort User Guide

81
Selecting Records

You can define include and omit conditions before the first outfile
statement to specify which input file records are to be included in the
sort, and which are to be ignored.

-include=condition

-omit=condition

The following example includes places records for the past sales in one
file and the records for the current day’s sales in another file:

-field=StoreID, character,
 Date, decimal,
 Time, character
-key=StoreID
-out_file=current_receipts -include=Date == 980201
-out_file=past_receipts -omit=Date == 980201

Figure 5-5 Selecting Records

StoreID Date Time ProdID Price Qty Total
106 980201 13:45 103 5.98 2 11.96
101 980131 09:04 324 2.59 6 15.54
204 980131 15:56 678 4.89 1 4.89
131 980130 13:10 324 2.59 2 5.18
106 980201 14:14 231 3.29 3 9.87
131 980130 15:21 103 5.98 4 23.92
204 980201 14:14 324 2.59 1 2.59
131 980131 15:34 324 2.59 5 12.95
106 980201 16:50 103 5.98 1 5.98
101 980130 14:01 678 4.89 3 14.67
 .
 .

StoreID Date Time ProdID Price Qty Total
106 980201 13:45 103 5.98 2 11.96
106 980201 14:14 231 3.29 3 9.87
106 980201 16:50 103 5.98 1 5.98
204 980201 14:14 324 2.59 1 2.59
 .
 .

StoreID Date Time ProdID Price Qty Total
101 980131 09:04 324 2.59 6 15.54
101 980130 14:01 678 4.89 3 14.67
131 980130 13:10 324 2.59 2 5.18
131 980130 15:21 103 5.98 4 23.92
131 980131 15:34 324 2.59 5 12.95
204 980131 15:56 678 4.89 1 4.89
 .
 .
Nsort User Guide

82
You can specify multiple selection statements. The selection statements
are applied, in the order given, until a TRUE condition is found. If the
TRUE statement is an include, the record is included in the sort. If the
TRUE statement is an omit, the record is omitted from the sort. Selection
statements beyond the TRUE statement are ignored.

If all selection conditions are FALSE, the record is included based on the
last selection statement. If the last selection statement was an omit, the
record is included in the sort. If the last statement was an include, the
record is omitted from the sort.

The following example includes records with past due balances in
excess of 30 days:

-field=amount_due, decimal,
 past_due, decimal
-omit=amount_due <= 0 # omit if no amount is due
-omit=past_due < 30 # or if less than 30 days

Input file selection cannot currently be done with the merge option.

Each out_file statement can be followed by selection statements that
control the selection of records written to that output file. The series of
selection statements for each output file is independent of the selection
statements for other output files. That is, the selection of a record in one
output file does not affect the selection of the same record in another
output file.

The following example places clean records in clean.dat, dirty
records in dirty.dat, and all records in all.dat.

-cond=clean=(balance >= 0 && balance < 100000000)
-outfile=clean.dat # file for clean records
-include=clean # include clean records for clean.dat
-outfile=dirty.dat # file for dirty records
-omit=clean # omit clean records for dirty.dat
-outfile=all.dat # file for all records
Nsort User Guide

83
Count Limitation

For sorts, the count statement can be used to limit the number of
records read by Nsort.

-count:number

The count limitation is applied before any record selection.
Nsort User Guide

84
Reformat

The reformat statement defines a new record layout, placing the fields
in the specified order.

-reformat=field_name [, field_name ...]

The resulting record contains only the listed fields, in the listed order.
Nsort can reformat both on input, as it reads records, and on output, as
it writes them. Only fixed-length and delimited records can be
reformatted.

The following example uses a reformat to remove and reorder fields:

-field=StoreID, character,
 Date, character,
 Time, character,
 ProdID, character,
 Price, decimal,
 Qty, decimal,
 Total, decimal
-key=StoreID -key=Date -key=ProdID
-reformat=StoreID, ProdID, Date, Price, Qty, Total

Figure 5-6 Reformat Records

StoreID Date Time ProdID Price Qty Total
106 980201 13:45 103 5.98 2 11.96
101 980201 09:04 324 2.59 6 15.54
204 980201 15:56 678 4.89 1 4.89
131 980201 13:10 324 2.59 2 5.18
106 980201 14:14 231 3.29 3 9.87
131 980201 15:21 103 5.98 4 23.92
204 980201 14:14 324 2.59 1 2.59
131 980201 15:34 324 2.59 5 12.95
106 980201 16:50 103 5.98 1 5.98
101 980201 14:01 678 4.89 3 14.67
 .
 .
 .

StoreID ProdID Date Price Qty Total
101 324 980201 2.59 6 15.54
101 678 980201 4.89 3 14.67
106 103 980201 5.98 2 11.96
106 103 980201 5.98 1 5.98
106 231 980201 3.29 3 9.87
131 103 980201 5.98 4 23.92
131 324 980201 2.59 2 5.18
131 324 980201 2.59 5 12.95
204 324 980201 2.59 1 2.59
204 678 980201 4.89 1 4.89
 .
 .
 .
Nsort User Guide

85
If you want to reformat the record for all output files, place the reformat
statement before the first output file specification. If you want to
reformat the records for one particular output file, place the reformat
statement after the output file statement. If you have multiple output
files, the reformat statement acts on the output file statement that most
recently preceded it.

This section discusses reformatting and includes the following
subsections:

• Input reformatting.
• Output reformatting.
• Reformatting guidelines.

Input Reformatting

You can edit records on input by placing the reformat statement
anywhere before the first output file specification (if any). Nsort
performs input reformatting before the sort occurs - key fields and
summarized fields must be included in the reformat results. Fields used
in input selection statements, however, do not need be present in the
reformat field list.

In the following example there are 3 fields in newline-delimited records.
The first field is used to select records for the sort. The second field is
the sort key. The reformatted records will contain the third and second
fields (dropping the first field).

-field= a, b, c
-key=b
-omit=(a==”invalid”) # omit record if first field is invalid
-reformat= c, b

With input reformatting, keys must be specified using field names (see
“Named Keys” on page 65), described keys (“Described Keys” on
page 65) are not allowed. If no keys are specified, the reformatted
records are ordered as character keys.
Nsort User Guide

86
Output Reformatting

Each output file can have a distinct record layout. A reformat statement
after an out_file statement defines the field list for the output file.

The following example creates a different layout for each of the sort
output files:

lines of text containing whitespace-separated fields
-field=color, # first field
 part_number, # second field
 remainder,position:3- # remaining input fields
-key=part_number # order by part_number
swap color and part_number fields
-reformat=part_number,color,remainder # input reformat
-condition=is_blue:(color==”blue”) # true if color is blue
put “blue” records in blue output file, dropping color field
-out_file=blue_records
-include=is_blue
-reformat=part_number,remainder # blue_records file format
place non-blue records in other file,
field order is part_number,color,remainder
-outfile=other_records
-omit=is_blue

For general information on the out_file statement, refer to “Output
Files” on page 107.
Nsort User Guide

87
Changing the Record Format, Field Separator or Record
Delimiter

A format statement can also be used after an out_file statement to
specify a new record format, field separator and/or record delimiter for
the records written to that output file. A format statement may be used
with or without a reformat statement.

The following example takes lines of text with white space field
separators, and changes the separator character for the first output file,
and both the separator and record delimiter for the second:

-format=delim:nl # default separator is whitespace
-out_file=out1 # first output file
-format=separator:pipe
-out_file=out2 # second output file
-format=separator:comma,delimiter:null

The following example takes fixed-size records containing a binary
integer and floating point number, and outputs both fields in ascii as
lines of text with the fields separated by a comma character (note that
the non-ascii input fields are automatically converted to ascii):

-format:size=8
-field:id,binary,size=4
-field:amount,float,size=4
-out_file:out.txt
-format:separator=comma
Nsort User Guide

88
Reformatting Usage Notes

Fixed-Size Records

When sorting lines of text as fixed-length records, a newline field
should be included as the last field in a reformat statement. The
newline field can either be defined in the input record or derived.

The following example reverses the order of two decimal numbers in
each record:

-format=size:11
-field=a, size:5, decimal,
 b, size:5, decimal,
 nwln, size:1
-key=b
-reformat=b, a, nwln

Delimited Records

With delimited records (e.g. lines of text), the following reformat
guidelines apply:

• Only separated fields may be used in a reformat statement. All fields
in a reformatted record will be separated by the field separator.

• An open-end field (a separated field containing a variable number of
input fields) can only be used as the last field in a reformat statement.

• Whitespace separated fields will be separated by a single space
character after a reformat, even when multiple input fields are
contained in a single separated field definition. In addition, the
default field value will be substituted for any field that is either
empty, contains only whitespace characters, or missing in the input
record. Examples of reformats with whitespace-separated fields are
given below.
Nsort User Guide

89
Examples

Given the following record with whitespace-separated fields:

red blue tan

the following field and reformat statements will transform the record as
follows:

Directives Result Record Comments

-field=one,two,three,four
-reformat=one,two,three

red blue tan single space characters
are used to separate
reformatted fields

-field=all,position:1-
-reformat=all

red blue tan multiple input fields in
a single separated field
will be separated by a
single space character
when reformatted

-field=one,two,three,four
-reformat=three,two,one

tan blue red

-field=one,two,three,four
-reformat=four,one

NULL red missing field gets
default field value

-field=one
-field=two,position:2.1-2.2
-reformat=two,one

NULL red field containing only
whitespace gets default
field value

-field=one
-field=two,position:2.1b-2.2
-reformat=two,one

NULL red empty field gets default
field value
Nsort User Guide

90
Derived Fields

You can use the derived statement to define a new field whose value is
either constant or an expression based on other fields. This new field
can then be used as a key, in a summarize or reformat field list, in an
expression, or anywhere else that Nsort supports a field name.

-derived=name=field_name, [size:number,] [datatype,] [pad:character,]
 value:expression

A derived field definition is similar to a standard field definition, except
for the following:

• The new field's value must be given with a value=expression qualifier.
• Neither position:number nor offset:number are supported.
• The new field cannot be a bit type.

Deriving New Fields

Date
980203
980108
980305
980731
990123
961026
950423
950601
940404
 .
 .
 .

Date
19980203
19980108
19980305
19980731
19990123
19961026
19950423
19950601
19940404
 .
 .
 .
Nsort User Guide

91
Default Addition of Derived Fields

Derived fields are, by default, added to the input record in the order
they are declared.

With fixed-size records, the derived fields are appended to the end of
the record:

Append a four byte integer to the record
-format=size:4
-field=offset:0, size:4, binary, unsigned
-derived=name:newfield, binary, unsigned, size:4, value:1

With delimited records, the derived fields follow all declared fields:
Append new field to the second and first fields
-field=one,
 two
-derived=name:new,char,value=”valid”

This default behavior can be disabled by specifying the
no_add_derived statement:

-no_add_derived

With no_add_derived, an input reformat statement must be used to
add derived fields to (or otherwise modify) the records. This statement
can be placed in the Nsort system-wide default options file,
nsort.params, to disable the default appending of derived fields.

A no_add_derived statement can be overridden with an add_derived
statement (the default):

-add_derived
Nsort User Guide

92
Counting by Key Value

A count of records by key value can be calculated by defining a derived
field with a value of 1, then summarizing that field. Two examples of
this follow.

In the first example the input is lines of text, each containing a single
word. The following statements in a specification file will produce an
output file containing the words in sorted order and a count of the
number times the work appears in the input:

get count of words in input
-field=word
-derived=name=count,decimal,value=”1”
-reformat=word,count
-key=word
-summarize=count

In the second example the input is fixed-size records containing a
product ID and the amount of an individual sale. The following
statements in a specification file will produce an output file containing
the product IDs in sorted order, and the total sales and count of sales
for that product:

-format=size:8
-field=product,binary,size:4
-field=sales,binary,size:4
-derived=name:count,binary,size=4,value=1
-key=product
-summarize=sales,count
Nsort User Guide

93
Expressions

Nsort uses numeric and string expressions to construct derived fields
and in the boolean conditions of selection statements.

An Nsort expression can be any of the following:

• A number.
• A string.
• A field name.
• A conditional expression.
• A parenthesized expression.

Numbers in Expressions

Numbers consist of an optional ‘+’ or ‘-’ sign, zero or more digits, an
optional decimal point, and zero or more digits. An exponent may also
be included.

123

-0.1

+3.2E-8

Strings in Expressions

Character strings start and end with double quotes ("). You can include
non-printable characters by using the escape sequences available for
single character constants.

"Ted"

"\tHenry\0240Smith"
Nsort User Guide

94
Field Names in Expressions

Field names may be used in nearly any expression. The one exception is
that a field which is not included in an input reformat may not be used
in an expression for an output file. For example:

-field:first,second,third
-reformat=second,third # drop “first” field
-key=second
-include:first != “ignore” # this is permitted
-out=data.out
-reformat=third
-include=second != “ignore” # permitted, “first” would not be

Conditional Expressions

A conditional expression is an expression of the form:

if condition then expression1 else expression2

The conditional expression evaluates the boolean condition; if TRUE it
returns expression1, otherwise it returns expression2. Conditional
expressions can be nested and chained together: expressions and
conditions can themselves contain conditional components.

-derived=name:message, char, size=30,
value:if balance >= 0 then

if balance == 0 then
"Thank you for your payment"

else
"Credit Balance"

else if past_due < 30 then
"Please pay this amount"

else
"Your account is overdue"
Nsort User Guide

95
Conditions

Nsort's boolean conditions appear in conditional expressions and in
include and omit record selection statements. Conditions can be
specified and named before they are used, or they can be given inline. A
condition is any of the following:

• condition-name
• condition1 { and | && } condition2
• condition1 { or | || } condition2
• expression1 relop expression2

where relop is one of the following:

• EQ or ==
• NE or != or <>
• LE or <=
• LT or <
• GE or >=
• GT or >
• CONTAINS or CT
• DOES NOT CONTAIN or NC

You can store and name a condition for later use with a condition
statement:

-condition:condition-name = expression

This is especially useful for frequently used and unwieldy conditions
like the following:

-cond=big_cond:(a == b && c == d) || (a != b && c != d)

-derived=name:new, char, size:10,value:
if big_cond then

"matching"
else

"different"
Nsort User Guide

96
Match Detection

By using the match directive, you can have a single character or byte
prepended to each output record that indicates whether all or a subset
of the keys in the output record match the same keys in the previous
output record. If the keys match, the ascii 1 character/byte is
prepended in front of the record. An ascii 0 is prepended if the keys do
not match.

-match[=number]

If a number is specified with the match directive only the specified
number of keys, starting with the first key, are compared to generate the
prepended character. If no number is specified with the match directive,
then all defined keys are compared.

Match Example

LEMON
MANGO
APPLE
BANANA
ORANGE
PAPAYA
APPLE
MANGO
ORANGE
MANGO

0APPLE
1APPLE
0BANANA
0LEMON
0MANGO
1MANGO
1MANGO
0ORANGE
1ORANGE
0PAPAYA
Nsort User Guide

Configuration and
Performance 6
This chapter covers Nsort’s configuration and performance options and
includes the following subsections:

• Memory usage (page 98).
• Number of internal threads (page 99).
• Sort methods (page 100).
• Statistics output (page 102).
• File I/O (page 104).
• Input Dataset Size (page 111).

98
Memory Usage

The memory option provides many ways to manage Nsort process
memory.

-memory=number[{k|m|g}]

You can set the limit on the amount of process virtual memory Nsort
considers using by specifying the memory size in bytes. Nsort needs
memory to hold the sort data plus approximately 10MB for its sorting
control structures. Setting the memory limit too high (to more than the
amount of available physical memory) can cause excessive page faults
or sort termination due to insufficient swap space.

The default memory limit is the minimum of half the amount of system
memory currently available for user processes and the following:

• On HP-UX , the resident set size limit for the user running Nsort. The
resident set size limit is the value displayed by the ``memoryuse´´
line in the output of the limit (csh) command.

• On Linux, Solaris and Windows, there is no additional default
memory limit.

If multiple Nsort instances (jobs) are to be run simultaneously in the
same system, each Nsort instance should be invoked with a memory
statement to limit its use of main memory - otherwise the multiple
instances of Nsort can allocate more virtual memory than the available
main memory, resulting in page faults and possibly severe performance
degradation. For instance to run 4 Nsort jobs simultaneously, each
Nsort instance’s memory statement should limit it to slightly less than
1/4 of available memory.
Nsort User Guide

99
Number of Internal Threads

The threads option specifies the number of internal sorting threads
Nsort will use. For historic reasons, this option can also be specified as
processes rather than threads. The default is to use:

• one sort thread if the input size is known to be less than a megabyte,

• otherwise Nsort creates up to 8 sort threads, but no more than the
number of unrestricted processors (see psradm(1) on Solaris) in the
system.

A warning message is issued if the requested number of threads is
larger than the number of processors available to Nsort.

-threads=number

-processes=number
Nsort User Guide

100
Sort Methods

The method statement is used to specify the internal method Nsort
shall use to sort the data. It is optional as Nsort chooses a reasonable
default.

-method= [{record | pointer}] [, {merge | radix}] [, no_radix]
[, hashing] [, no_hashing]

Record and Pointer Sort

In a record sort, Nsort orders data in memory by moving each record
several during in the course of a sort. In contrast, with a pointer sort,
Nsort copies a pointer to each record several times, moving the record
only once for each sort pass. A record sort can only be performed on
fixed-length records of 100 bytes or less.

Record sorts tend to be faster for small records, pointer sorts are faster
for large records. By default, Nsort performs a record sort for fixed-
length records up to 32 bytes in size (after input record editing).
Conversely, larger or non-fixed-length records are sorted using a
pointer sort by default.

Merge and Radix Sort

With a merge sort, records or record pointers are brought into sorted
order by merging (see The Art of Computer Programming, Volume 3, by
Knuth, pp. 251-266). Merging is the default. The alternative is a radix
sort (Ibid, pp. 170-180), also known as a most significant digit first radix
sort, or bucket sort. A radix sort may be somewhat faster than merge
when the first 4 bytes of each key have well distributed values. In other
cases merging is superior. The radix sort is a deprecated option in
Nsort.
Nsort User Guide

101
Key Hashing

The hashing modifier can be used to speed up some summarizing or
duplicate-eliminating sorts, if the records need not be returned in sorted
order. The hash modifier changes the semantics of the sort so that
records are ordered according to a hash value of the specified keys,
rather than the specified keys — but only records with equal key values
are treated as duplicates (summarized or deleted). If the first 4 bytes of
key values are not well distributed, using the hash modifier may reduce
the amount of CPU time necessary to summarize the data or delete
duplicates. In other cases it should not be used. The hash modifier can
be used with any combination of record or pointer and merge or radix.
The hashing modifier is deprecated option in Nsort.
Nsort User Guide

102
Statistics Output

-[no]statistics

If the statistics statement is specified, Nsort will write performance
statistics to the standard error file. The default is to not generate
statistics.

If you have questions about the performance of a particular sort, you
can email the statistics output to support@ordinal.com for analysis.
Please include the Nsort command line and any associated Nsort
specification files.
Nsort User Guide

103
Version Information

-version

If the version statement is specified, Nsort will write its version,
installation directory, processor count and licensing information to the
standard error file. Nsort will then terminate.
Nsort User Guide

104
File I/O

High speed file I/O usually is critical to Nsort performance. High disk
transfer rates can be achieved by using file systems comprised of
multiple disks. For input and output files, this can be achieved by using
a striped logical volume (i.e. a logical disk device that is striped across
multiple drives), RAID devices, or a combination of the two.

Nsort allows you to specify several file parameters for I/O
performance. The following options are supported wherever Nsort
expects a file name:

• The access mode: direct, mapped, or buffered.
• The transfer size: transfer_size:number[k|m]
• The maximum number of simultaneous I/O requests: count:number.

It is usually not necessary to specify any of these file options as Nsort
attempts to select the most appropriate options.

Access Mode

Direct I/O is the most efficient method of accessing files which are not
in the UNIX or Windows disk cache. The data is copied directly
between the I/O device and Nsort's memory. A direct qualifier is most
useful for large files which are not primarily resident in the UNIX disk
cache.

On Solaris systems, direct i/o is implented via a write-only, persistent file
status directive, directio(3S). Nsort will always leave this persistent status as
OFF when it finishes execution.

If all or most of an input file is expected to be in the UNIX disk cache,
then mapped is often the best input mode - the data becomes available
to Nsort without any copying at all. Buffered access can also be useful
for files that are not entirely resident in the UNIX disk cache. Nsort also
uses a fourth access mode, serial, required for file types for which
random access is not possible (e.g. pipes and terminals).
Nsort User Guide

105
Transfer Size

The transfer size is the amount of data Nsort will request to transfer in
any one I/O request to the operating system. A default transfer size is
set automatically by Nsort, and may vary depending on the amount of
available memory.

Count of Simultaneous I/O Requests

With both direct and buffered access, Nsort minimizes the amount of
time it waits for disk I/O by utilizing asynchronous I/O requests. A
default count of overlapping I/O requests is set automatically by Nsort.

File System Defaults

You can specify per-file system defaults for the access mode, transfer
size, and request count. Any file residing on such a file system will use
the specified value as its defaults.

-file_system= filename [, {direct|mapped|buffered}]
[, transfer_size:number[k|m]] [, count:number]

The filename can either be the file system name, or the name of any file
on the file system (e.g. the mount point).

/xlv is the mount directory for a 64-drive logical volume with
a step size of 128K. The transfer size is 64*128K or 8M.
-file_sys:/striped,transfer:8M,count:2

It is best the let Nsort use its default access mode, transfer size and
request count.
Nsort User Guide

106
Input and Output Files

The in_file and out_file statements allow input and output files to be
declared and, optionally, to set their access mode, transfer size and
request count. The specification of an access mode, transfer size or
request count on a file overrides any default specified for its
corresponding file system.

Input Files

An in_file statement names one or more file containing data to be
sorted, merged, or copied. A filename consisting of a single dash (-)
denotes the standard input. You can give multiple input files by using
separate in_file statements, or including several file names in one
in_file, or both. These names are added to any input files listed on the
command line to specify the data set to be sorted.

-in_file= filename[...] [, {direct|mapped|buffered}]
[, transfer_size:number[k|m]] [, count:number]

It is not necessary to specify the input file access mode, transfer size and
count of asynchronous i/o requests. Nsort will make appropriate choices
for these parameters.

An example of setting these parameters follows:
-in_file=input.data, direct, trans:2M, count:2

For file or directory names that contain space characters, the file name
should be enclosed in double quotes:

-in_file=”c:\My Stuff\My Input File.dat”

The special wildcard characters ‘*’ and ‘?’ can be used to match
multiple input files:

-in_file=input*.dat
Nsort User Guide

107
Output Files

The output file will be created if necessary. A file specification of a
single dash (-) or no out_file specification sends the result to the
standard output.

-out_file= filename [, {buffered|direct}] [, transfer_size:number[k|m]]
[, count:number] [, append] [,preallocate[:number]]

It is not necessary to specify the output file access mode, transfer size and
count of asynchronous i/o requests. Nsort will make appropriate choices
for these parameters.

The append qualifier causes the sorted results to be appended to the
end of an existing output file. The default is to replace an existing
output file.

The preallocate option, available only on Windows platforms, causes
Nsort to preallocate file space for the file. The number option is a
decimal factor which is multiplied by the input file size (or dataset_size
declaration) to determine the preallocation size. Specifying a factor can
be useful in cases where the output file size is different from the input
file size (e.g. where duplicates are eliminated). If the preallocation factor
is not specified, a factor of 1.0 is used. The preallocate option is only
useful with very high-bandwidth volumes, and requires
SE_MANAGE_VOLUME_NAME privilege.

Example:

-out_file=/usr/people/frank/data/sort.output,buffered

For file or directory names that contain space characters, the file name
should be enclosed in double quotes:

-out_file=”c:\My Stuff\My Output File.dat”

You can assign distinct selection criteria and record layouts for each
output file by placing reformat, include, and omit statements after the
out_file statement. For information on conditionally including/omitting
records, reordering fields, or changing the field separator or record
delimiter for an output file, refer to “Output Reformatting” on page 86.
Nsort User Guide

108
Temporary Files

The temp_file statement declares the location of the temporary files
necessary for a two pass sort. Temporary files are not used if the sort
data fits in main memory (one pass sort), or with the merge or cat
options. Temporary files are always accessed using direct mode. In the
absence of a temp_file statement, Nsort creates a single temporary file
in the following directory:

• On HP-UX and Linux systems, /tmp
• On Solaris systems, /var/tmp
• On Windows systems, the default temporary directory returned by

the GetTempPath() system call.

The speed of the temporary file systems can be the limiting factor when
sorting files residing on striped file systems.

-temp_file= [default ,] filename[,...]
[, transfer_size:number[k|m]] [, count:number]
[,preallocate[:number]]

The temp_file statement specifies the stripe set of temporary files for a
two pass sort, the transfer sizes to or from these files, and the maximum
count of requests to or from each file. If a filename refers to a directory
then Nsort will create a temporary file in that directory. If a filename
refers to an existing file, the file will be truncated before it is used. It is
recommended the transfer size and count of I/O requests not be
specified (and the Nsort defaults used instead).

For file or directory names that contain space characters, the file name
should be enclosed in double quotes:

-temp=”c:\My Temp”

The special wildcard characters ‘*’ and ‘?’ can be used to match
multiple temporary files:

-temp=/temp*
Nsort User Guide

109
The default qualifier indicates the list of temporary file directories that
follow in the directive will be the default. If a subseqent -temp_file
directive is specified, the temporary file directories listed in the
subsequent directive will replace the default list of directories. In the
absence of a default qualifier in the first -temp_file directive, both lists
of temporary file directories will be combined to form the list of temp
file directories.

The preallocate option, available only on Windows platforms, causes
Nsort to preallocate file space for the temporary file. The number option
is a decimal factor which is multiplied by the input file size (or
dataset_size declaration) to determine the preallocation size. Specifying
a factor can be useful in cases where the temporary file size is different
from the input file size (e.g. where duplicates are eliminated). If the
preallocation factor is not specified, a factor of 1.0 is used. The
preallocate option is only useful with very high-bandwidth volumes,
and requires SE_MANAGE_VOLUME_NAME privilege.
Nsort User Guide

110
Multiple Temporary Files

Successive temp_file statements accumulate, specifying additional
temporary file locations.

declare the directories for Nsort to create its
temporary file stripe. These happen to be the mount
directories (but are not required to be) for 4 (presumably
single-disk) file systems. use a transfer size of 256K,
and request count of 2.
-temp=/tmp0,/tmp1,/tmp2,/tmp3,transfer:256K,count:2

Each temporary file should reside on a separate file system.

Nsort automatically stripes its temporary file data across the collection
of temporary files. A run-time error will occur if there is not sufficient
space on any one of the temporary file systems. The temporary file
space required may be up to 10% more than the size of the input data
set (excluding cases where fields are added on input with a reformat
statement, or where there is an extremely low amount of main memory
available). For example, when sorting a 50 GB input data set with 4
temporary files, the file systems for each temporary file should contain
at least one quarter of 55 GB of free space.

It may be useful to include a temp_file statement in the Nsort system-
wide defaults file (see “System-wide Default File” on page 21) to
declare a system-wide default temporary file stripe. In order to override
such a default, a “-temp_file=()” statement will cause all temporary file
designations seen up to that point to be discarded, allowing a new set
of temporary files to then be defined.
Nsort User Guide

111
Dataset Size

When one of the files being sorted is a pipe, fifo or tty you can use the
dataset_size option to easily tune Nsort’s memory use.

-dataset_size=number[{k|m|g}]

This option specifies the number of bytes that will be in Nsort’s input,
including any regular files in addition to the pipes, fifos or ttys. Nsort
uses the dataset size to determine the appropriate temporary file
transfer size and amount of main memory for the sort. Without a
dataset size Nsort may use more memory than needed or choose an
inappropriately large temporary file transfer size.

This option is unnecessary when all of Nsort’s input comes from
regular files, or when performing a merge.
Nsort User Guide

112
Nsort User Guide

Sort Subroutine Library 7
The Nsort subroutine library allows a user application to invoke Nsort
subroutines to sort or merge data. The processed data is provided by
and returned to the user application. The Nsort subroutine library is
available on the HP-UX, Solaris and Windows NT platforms.

This chapter covers the API (application programming interface) for
Nsort’s sort subroutine library and includes the following subsections:

• Compiling and Linking (page 114).
• Standard Sort Subroutine Usage (page 116).
• Merging Records (page 127).
• User-Defined Compares (page 133).
• Error Handling (page 138).

114
Compiling and Linking

Compiling and Linking

C programs that invoke Nsort API calls should include the nsort.h file:

#include “nsort.h”

If the Nsort package has been installed on HP-UX, Linux or Solaris, the
nsort.h file has been copied to /usr/include and may be included as:

#include <nsort.h>

Programs that invoke the Nsort API should be linked with the Nsort
library. The following table lists the Nsort library names for each
operating system.

Linux and Unix Systems

On Unix systems, the libnsort file is automatically copied to /usr/lib as
part of the installation process. An application program can then be
compiled and linked as follows:

HP-UX libnsort.1

Linux libnsort.so.1

Solaris libnsort.so.1

Windows NT libnsort.lib

HP-UX cc -o my_app my_app.c -lnsort -lpthread -lrt -lm

Linux gcc -o my_app my_app.c -lnsort

Solaris cc -mt -o my_app my_app.c -lnsort -lpthread -lposix4 -lm
Nsort User Guide

115
Windows Systems

When Nsort is installed on Windows the libnsort.dll file is placed in the
installation directory, which is added to the default PATH environment
variable. The application using the library can be compiled and linked
on the command line as follows:

Windows NT cl /MT -o my_app my_app.c libnsort.lib
Nsort User Guide

116
Standard Sort Subroutine Usage

The standard sequence of Nsort function calls to sort records is as
follows:

nsort_define(...) to define the sort being performed
for each record or block of records to be sorted:

nsort_release_recs(...)
nsort_release_end(...) to declare the end of records to be sorted
for each record or block of records to be returned in sorted order:

nsort_return_recs(...)
nsort_get_stats(...) to get performance statistics (optional)
nsort_end(...) to declare end of sort
nsort_version() to get Nsort library version info (optional)

A simple example program is shown in “Example Application Program
Performing a Sort” on page 125.

All of the Nsort API functions return an integer status value that
indicates whether the function returned successfully, returned
successfully with a warning, or returned with a fatal error. For more
details see “Error Handling” on page 138.

The standard Nsort API functions for sorting records will now be
explained individually.
Nsort User Guide

117
nsort_define
nsort_msg_t nsort_define(const char *sortdef,

unsigned options,
nsort_error_callback_t *error_callback,
nsort_t *ctxp);

The nsort_define() call takes a string that describes the sort to be
performed and creates a context for the sort that identifies the sort.

Arguments

Returns

sortdef Pointer to a string containing a sort description in
Nsort’s sort definition language (POSIX sort
program command line arguments are not
allowed). Input is assumed to come from
nsort_release_recs() calls by the host program. The
host program should use nsort_return_recs() to
obtain the output records in sorted order.

options Either 0 (no options) or NSORT_NO_DEFAULTS
(nsort does not read the nsort.params file to get
system-wide configuration defaults.

error_callback Either NULL (no error callbacks) or points to an
nsort_error_callback_t structure that defines an
error callback routine and the its first argument.
For more details, see “Declaring an Error Callback
Routine” on page 140.

ctxp Pointer to a sort context id (unsigned int). The id is
always overwritten with the new sort context id.

NSORT_SUCCESS Operation completed successfully.

... See Appendix A for a complete list.
Nsort User Guide

118
nsort_release_recs
nsort_msg_t nsort_release_recs(void *buf,

size_t size,
nsort_t *ctxp);

The nsort_release_recs() call passes one or more records to Nsort for
sorting.

Arguments

Returns

buf Pointer to record(s) being released to Nsort for
sorting.

size Integer containing total size in bytes of the records
being released

ctxp Pointer to sort context id.

NSORT_SUCCESS Operation completed successfully.

NSORT_INVALID_PHASE nsort_release_end() has already
been called for this sort.

NSORT_INVALID_CONTEXT The context id in invalid.

... See Appendix A for a complete list.
Nsort User Guide

119
nsort_release_end
nsort_msg_t nsort_release_end(nsort_t *ctxp);

The nsort_release_end() call indicates that there are no additional
records that will be released to Nsort. A nsort_release_end() call is
required between the last nsort_release_recs() call and the first
nsort_return_recs() call.

Arguments

Returns

ctxp Pointer to sort context id.

NSORT_SUCCESS Operation completed successfully.

NSORT_INVALID_CONTEXT The context id in invalid.

... See Appendix A for a complete list.
Nsort User Guide

120
nsort_return_recs
nsort_msg_t nsort_return_recs(void *buf,

size_t *size,
nsort_t *ctxp);

The nsort_return_recs()call returns one or more output records.
Successive calls to nsort_return_recs() will return all output records in
sorted order.

Arguments

Returns

buf Pointer to buffer where Nsort should place the
output records being returned.

size Pointer to an integer containing the size of the
buffer. The size should be at least as large as the
maximum declared (or default) record size. The size
integer will be modified by the function to contain
the total size of the record(s) returned in the buffer.

ctxp Pointer to sort context id.

NSORT_SUCCESS Operation finished successfully.

NSORT_END_OF_OUTPUT The end of sort output has been
reached. No records were
returned by this call.

NSORT_INVALID_PHASE nsort_release_end() has not been
called for this sort.

NSORT_RETURN_BUF_SMALL The buffer size is not large
enough to hold the declared (or
default) maximum record size.

... See Appendix A for complete list.
Nsort User Guide

121
nsort_get_stats
const char nsort_get_stats(nsort_t *ctxp);

The nsort_get_stats() call returns a pointer to a character string
containing an Nsort statistics report. The user should include the
“-statistics” directive in the Nsort command passed to nsort_define().
This optional function can only be called after an nsort_return_recs()
call returns NSORT_END_OF_OUTPUT, but before a call to
nsort_end().

Arguments

Returns

A pointer to a string containing the Nsort statistics report. The memory
for the string will be automatically freed when nsort_end() is called.

ctxp Pointer to sort context id.
Nsort User Guide

122
nsort_print_stats

Note: the nsort_print_stats() function has been deprecated in favor of
nsort_get_stats().

nsort_msg_t nsort_print_stats(nsort_t *ctxp,
FILE *fp);

The nsort_print_stats() call prints the Nsort statistics output to the
given file pointer. This optional function can only be called after an
nsort_return_recs() call returns NSORT_END_OF_OUTPUT, but
before a call to nsort_end().

Arguments

Returns

ctxp Pointer to sort context id.

fp Standard I/O Library file pointer of file to write the
Nsort statistics to.

NSORT_SUCCESS Operation completed successfully.

NSORT_INVALID_PHASE Nsort has not yet returned the final
output record.

NSORT_INVALID_CONTEXT The context id in invalid.

... See Appendix A for a complete list.
Nsort User Guide

123
nsort_end
nsort_msg_t nsort_end(nsort_t *ctxp);

The nsort_end() call cancels and/or terminates a sort or merge. This call
cancels any sort in progress, frees any resources allocated for the given
context, and deallocates the context.

Arguments

Returns

ctxp Pointer to sort or merge context id. The id is cleared
by the function before it returns.

NSORT_SUCCESS Operation completed successfully.

NSORT_INVALID_CONTEXT The context id in invalid.

... See Appendix A for a complete list.
Nsort User Guide

124
nsort_version
char nsort_version(void);

The nsort_version() call returns a pointer to a character string
containing an Nsort version string. This function can be called anytime
to identify the current version of the Nsort library.

Arguments

None.

Returns

A pointer to a string containing the Nsort version. The string should not
be freed by the caller.
Nsort User Guide

125
Example Application Program Performing a Sort
#include <stdio.h>
#include <stdlib.h>
#include "nsort.h"

void error_exit(char *func, int err, unsigned context)
{
 fprintf(stderr, "%s returns %d/%s\n",
 func, err, nsort_message(&context));
 nsort_end(&context);
 exit(1);
}

/* Example program to take input files on the command line,
 * merge the contents and write the result to standard output.
 */
main(int argc, char *argv[])
{
 unsigned context;
 int err;
 char buf[8000];
 int size;
 unsigned retsize;

 /* Define sort record type lines of text with fields
 * separated by '|'. Key is the third field.
 */
 err = nsort_define("-format:sep='|' -key:pos=3",
 0, NULL, &context);
 if (err < 0)
 error_exit("nsort_define()", err, context);

 /* Read records from standard input, and release them to Nsort
 */
 while (size = read(0, buf, sizeof(buf)))
 {
 if (size < 0)
 perror("<stdin>"), exit(1);
 if ((err = nsort_release_recs(buf, size, &context)) < 0)
 error_exit("nsort_release_recs()", err, context);
 }

 /* Tell Nsort there is no more input. */
 if ((err = nsort_release_end(&context)) < 0)
 error_exit("nsort_release_end()", err, context);
Nsort User Guide

126
 /* Get the records output from the sort and write to stdout.
 */
 for (;;)
 {
 retsize = sizeof(buf); /* Warning: must be bigger than
 biggest possible record */
 if ((err = nsort_return_recs(buf, &retsize, &context)) < 0)
 error_exit("nsort_return_recs()", err, context);
 if (err == NSORT_END_OF_OUTPUT)
 break;
 write(1, buf, retsize); /* write to stdout */
 }
 nsort_end(&context);
}

Nsort User Guide

127
Merging Records

The standard sequence of Nsort function calls to merge records is
similar to those for sorting records. The main difference is that merge
input is provided by a merge input callback routine, rather than
nsort_release_recs() calls. The sequence of calls for merging is:

nsort_merge_define(...) to define the merge and merge input callback
for each record or block of records to be returned in merged order:

nsort_return_recs(...)
nsort_print_stats(...) to print performance statistics (optional)
nsort_end(...) to declare end of sort

For a simple example program, see “Example Application Program
Performing a Merge” on page 131.

The following sections will describe the nsort_merge_define() call, and
merge input callback routines.
Nsort User Guide

128
nsort_merge_define
nsort_msg_t nsort_merge_define(const char *sortdef,

unsigned options,
nsort_error_callback_t *error_callback,
int merge_width,
nsort_merge_callback_t *merge_input,
nsort_t *ctxp);

The nsort_merge_define() call takes a string that describes the sort to be
performed and creates a context for the merge that identifies the merge.

Arguments

Returns

sortdef Pointer to a string containing a merge description
in Nsort’s sort definition language. Merge input
files should not be defined in the string

options Either 0 (no options) or NSORT_NO_DEFAULTS
(nsort does not read the nsort.params file to get
system-wide configuration defaults.

error_callback Either NULL (no error callbacks) or points to an
nsort_error_callback_t structure that defines an
error callback routine and the its first argument.

merge_width The number of merge input streams to be merged.

merge_input Pointer to an nsort_merge_callback_t structure that
defines a merge input routine and its last argument.

ctxp Pointer to a sort context id (unsigned int). The id is
always overwritten with the new sort context id.

NSORT_SUCCESS Operation completed successfully.

... See Appendix A for a complete list.
Nsort User Guide

129
Merge Input Callback

A merge input callback routine must be defined in a
nsort_merge_define() call. Nsort will request merge input records from
the application using the merge input callback function.

The merge input callback routine should follow the prototype below:

typedef int (*nsort_merge_input_t)(int merge_index,
char *buf;
int size,
void *input_arg);

Arguments

Returns:

See the next section for how to declare the merge input function.

merge_index Index, ranging from 0 to merge_width - 1, of the
merge input stream being requested.

buf Pointer to buffer where the requested merge input
records should be placed by the callback routine.

size Size of the buf buffer in bytes.

input_arg Pointer argument specified by the application
program in the nsort_merge_define() call.

> 0 The number of bytes placed in the buf buffer.

0 Indicates there is no further input for the given
merge stream.

< 0 Indicates an input error has occurred. In this case,
Nsort will issue an error message using errno on
Unix or GetLastError() on Window NT, and then
abort the merge.
Nsort User Guide

130
Declaring a Merge Input Callback Routine

A merge input callback routine can be declared using the
merge_input_callbacks argument to nsort_merge_define(). This argument
is a pointer to the following structure that contains a pointer to the
merge input callback routine and its last argument:

typedef struct
{

nsort_merge_input_t input;
void *arg;

} nsort_merge_callback_t;

See previous page for a description of the merge input callback routine.

For more information on nsort_merge_define(), see page 128.
Nsort User Guide

131
Example Application Program Performing a Merge
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include "nsort.h"

/* merge input callback function
 */
int merge_input(int merge_index, char *buf, int size, int *fd)
{
 return (read(fd[merge_index], buf, size));
}

void error_exit(char *func, int err, unsigned context)
{
 fprintf(stderr, "%s returns %d/%s\n",
 func, err, nsort_message(&context));
 nsort_end(&context);
 exit(1);
}

/* Example program to take input files on the command line,
 * merge the contents and write the result to standard output.
 */
main(int argc, char *argv[])
{
 int *fd;
 int width = argc - 1;
 unsigned context;
 int err;
 nsort_merge_callback_t mc;
 int i;
 char buf[70000];
 unsigned retsize;

 fd = malloc(width * sizeof(fd[0]));
 for (i = 0; i < width; i++)
 fd[i] = open(argv[i + 1], O_RDONLY);
Nsort User Guide

132
 /* Define merge record type as lines of text with
 * tab-separated field. Key is second character field.
 */
 mc.input = merge_input;
 mc.arg = fd;
 err = nsort_merge_define("-format:sep=tab -key:pos=2",
 0, NULL, width, &mc, &context);
 if (err < 0)
 error_exit("nsort_merge_define()", err, context);

 /* Get the records output from the merge and write to stdout.
 */
 for (;;)
 {
 retsize = sizeof(buf); /* Warning: must be bigger than
 biggest possible record */
 if ((err = nsort_return_recs(buf, &retsize, &context)) < 0)
 error_exit("nsort_return_recs()", err, context);
 if (err == NSORT_END_OF_OUTPUT)
 break;
 write(1, buf, retsize); /* write to stdout */
 }
 nsort_end(&context);
}

Nsort User Guide

133
User-Defined Compares

The application program may define its own functions for comparing
record fields. Nsort can invoke these comparison functions from
multiple threads, thereby leveraging the capabilities of multiprocessor
systems.

The following subsections explain the required comparison function
type, how to declare a comparison function to Nsort, and how to
specify a comparison function in a sort or merge definition.

• Comparison Function Type (page 134).
• Declaring the Comparison Function to Nsort (page 136).
• Specifying the Comparison Function in a Sort or Merge Definition

String (page 137).
Nsort User Guide

134
Comparison Function Type

Comparison functions must be of the following type:

typedef int (*nsort_compare_t)(void *p1,
void *p2,
int len1,
int len2,
void *compare_arg);

Arguments

Returns

The comparison function should be programmed to return the
following values:

p1 Pointer the field to be compared in the first record.

p2 Pointer the field to be compared in the second
record.

len1 Length in bytes of the field in the first record.

len2 Length in bytes of the field in the second record.

compare_arg Pointer argument defined when the function was
declared using nsort_declare_function(). This
argument may be used to identify compare
derivations of the programmer’s choice (e.g. folding
upper case to lower case).

< 0 The field in the first record sorts before the field in
the second record.

0 The field in the first record sorts equal to the field in
the second record.

> 0 The field in the first record sorts after the field in
the second record.
Nsort User Guide

135
Nota Bene

Comparison functions must have the following properties:

• Reentrancy - Nsort will can invoke comparison functions from
mutliple threads, even when only one process (thread) is used. Avoid
using static variables in comparison functions, or other techniques
that will prevent the correct execution of multiple, concurrent
comparison functions.

• Trichotomy - For any two key fields A and B, exactly one of the
following three relationships must be consistently indicated by the
comparison function, regardless the of the order in which the two
fields are passed to the comparison function:

A < B
A = B
A > C

This rule must be followed for all possible key field values, including
empty fields (if possible).

• Transitivity - For any three key fields A, B and C, if A > B and B > C,
then A > C.

Failure to adhere to these properties can result in Nsort abnormally
terminating with an error message, hanging, or even loss of data.
Nsort User Guide

136
nsort_declare_function

User-defined compare functions can be declared to Nsort using a
nsort_declare_function() call.

nsort_msg_t nsort_declare_function(char *name,
nsort_compare_t function,
void *arg);

The nsort_declare_function() call is not associated with a particular
sort context. The declared function name can be used in any subsequent
nsort_define() or nsort_merge_define() call. A previous declaration of
the same compare function name will be overwritten by
nsort_declare_function().

Arguments

Returns

name Pointer to a string containing the name of the
comparison routine that the application program
will use in a subsequent nsort_define() call.

function Pointer to the comparison function.

arg Compare argument pointer that Nsort will pass to
all invocations of function to resolve name
comparisons.

NSORT_SUCCESS Operation completed successfully.

... See Appendix A for a complete list.
Nsort User Guide

137
Specifying a User-Defined Comparison

The user-defined comparison function declared by an
nsort_declare_function() call can be used in field comparisons by
adding a compare:name qualifier to the desired field declaration in a
subsequent nsort_define() or nsort_merge_define() call. The name in the
compare qualifier must match the name argument to a
nsort_declare_function() call.

Example
int mytype_compare(void *col1, void *col2, int l1, int l2, void *arg);

...

ret = nsort_declare_function("mytype", mytype_compare, mytype_arg);

...

ret = nsort_define("-format=size:72 "
"-field:name=fld1,size=4,off=0,compare=mytype "
"-key:fldl", 0, NULL, &context);

Instead of first declaring a user-defined comparison function with
nsort_declare_function(), the address of the user-defined comparison
function can be given in hexadecimal after the compare qualifier. In
addition, the value of the compare_arg argument to the comparison
function can also be declared following the arg qualifier.

Example
int mytype_compare(void *col1, void *col2, int l1, int l2, void *arg);

struct mystruct myarg;

char def_buf[300];

sprint_s(def_buf, sizeof(def_buf),
"-format=size:72 -key:off=0,compare=0x%I64x,arg=0x%I64x"
(unsigned __int64)mytype_compare,
(unsigned __int64)&myarg);

...

ret = nsort_define(def_buf, 0, NULL, &context);
Nsort User Guide

138

se
Error Handling

Each Nsort API function returns an integer status value that can
indicate success, warning condition or error condition:

Getting an Error or Warning String

When an Nsort function returns non-zero, a warning or error condition
has occurred. A character string describing the warning or error can
then be obtained by calling nsort_message():

extern char *nsort_message(nsort_t *ctxp);

Arguments

The character string returned should not be deallocated by the
application program (e.g. by passing the pointer value to free()).

< 0 The function did not complete successfully becau
of a fatal error.

0 (NSORT_SUCCESS) The function completed successfully.

> 0 The function completed successfully with a non-
fatal warning.

ctxp Pointer to sort context id.
Nsort User Guide

139
Error Callbacks

An error callback routine may be defined to allow application-specific
processing of a warning or error condition (e.g. print a non-English
description). The callback routine will be called when an Nsort API
function detects a warning or error condition, before the API function
returns the warning or error status to the application program. The
error routine must return to allow Nsort to cleanup sort resources.

typedef void (*nsort_error_t)(void *arg, nsort_msg_t msg,
nsort_t context, char *line
int char_no, int n_args, ...);

Arguments

arg Pointer argument declared with callback function.

msg Integer indicating the type of error or warning that
has occurred. This is the same integer that will
subsequently be returned by the Nsort API
function.

context Sort context id for which the warning or error is
being issued.

line If the error or warning occurred in parsing the sort
specification passed to nsort_define() this argument
is a pointer to the line where the error occurred,
otherwise it is NULL.

char_no If the error or warning occurred in parsing the sort
specification passed to nsort_define() this argument
is an integer indicating the character number in the
line where the error occurred, otherwise it is -1.

n_args Integer containing the number of additional, error-
specific arguments.

... 0 - 7 additional arguments depending on particular
error or warning number.
Nsort User Guide

140
Declaring an Error Callback Routine

An error callback routine can be declared using the error_callbacks
argument of nsort_define(). This argument is either NULL (no error
callback routine) or a pointer to the following structure that contains a
pointer to the error callback routine and its first argument:

typedef struct
{

nsort_error_t error;
void *arg;

} nsort_error_callback_t;

See previous page for a description of the error callback routine.

For more information on nsort_define(), see page 117.
Nsort User Guide

141
Raising an Error in a User-Defined Comparison or Merge Input
Callback Function

A user-defined comparison or a merge input callback function can raise
a fatal error by calling nsort_raise_error().

const char nsort_raise_error(char *message);

This function will cause the termination of the nsort context associated
with the Nsort thread that is calling the compare function or merge
input callback.

The function will not return unless the calling thread does not belong to
an Nsort context, in which case a descriptive error string is returned.
Nsort User Guide

142
Nsort User Guide

Errors and Warnings A
This appendix describes the errors and warnings returned by Nsort and
includes the following sections:

• Errors.
• Warnings.

The following information is listed for each error or warning message:

• The decimal value returned by Nsort for the error/warning.

• The macro name for the error/warning as given in the nsorterrno.h
file.

• The error/warning string printed (or returned by nsort_message()).

• The recommended user action.

144
Errors

(-1) NSORT_STATEMENT_START
A statement must start with '/' or '-'
Action: Correct the indicated error in the sort specification.

(-2) NSORT_COLON_EXPECTED
A ':' or '=' is expected here
Action: Correct the indicated error in the sort specification.

(-3) NSORT_COMMA_EXPECTED
A ',' is expected inside a list
Action: Correct the indicated error in the sort specification.

(-4) NSORT_UNEXPECTED_IN_LIST
This is not expected inside this list
Action: Correct the indicated error in the sort specification.

(-5) NSORT_PAREN_EXPECTED_BEFORE
A parenthesis '(' was expected here
Action: Correct the indicated error in the sort specification.

(-6) NSORT_PAREN_EXPECTED_AFTER
A parenthesis ')' was expected here
Action: Correct the indicated error in the sort specification.

(-7) NSORT_AMBIGUOUS_IDENTIFIER
This %s name is not sufficiently selective.
The possible names here are:
Action: Correct the indicated error in the sort specification.

(-8) NSORT_UNEXPECTED_KEYWORD
This word is not supported in this context.
The commands recognized here are:
Action: Correct the indicated error in the sort specification.

(-9) NSORT_UNKNOWN_KEYWORD
This is not an Nsort keyword
Action: Correct the indicated error in the sort specification.
Nsort User Guide

145
(-10) NSORT_IO_ERROR
I/O error occured %s "%s": %s
Action: Analyze OS-issued I/O error and try to correct. For instance, user may
not have permission to access/write a file, file system may be out of space or
may not support files larger than 2GB.

(-11) NSORT_NEEDS_POSITIVE_INT
A positive integer is expected here
Action: Correct the indicated error in the sort specification.

(-12) NSORT_SCALE_OVERFLOW
This scaled number does not fit in a 64-bit integer
Action: Correct the indicated error in the sort specification.

(-13) NSORT_TYPE_MISMATCH
The type of this expression must match the type of the field
Action: Correct the indicated error in the sort specification.

(-14) NSORT_TYPE_WITHOUT_SIZE
This type needs a size:<number> specification
Action: Correct the indicated error in the sort specification.

(-15) NSORT_EXTENDS_PAST_END
This field extends beyond the end of the record
Action: Correct the indicated error in the sort specification by either increasing
the record size of changing the position/offset of the field.

(-16) NSORT_UNSIGNED_WITHOUT_TYPE
The 'unsigned' qualifier is supported only for binary types
Action: Correct the indicated error in the sort specification.

(-17) NSORT_FIELD_NEEDS_EQ
'=' or ':' is needed after 'name'
Action: Correct the indicated error in the sort specification.

(-18) NSORT_METHOD_NEEDS_EQ
'=' or ':' is needed after 'method'
Action: Correct the indicated error in the sort specification.
Nsort User Guide

146
(-19) NSORT_SPECIFICATION_NEEDS_EQ
'=' or ':' is needed after 'specification'
Action: Correct the indicated error in the sort specification.

(-20) NSORT_FIELD_ALREADY_NAMED
This field has already been named
Action: Correct the indicated error in the sort specification.

(-21) NSORT_BAD_FIELD_NAME
A field name may contains letters, digits, and '_'
Action: Correct the indicated error in the sort specification.

(-22) NSORT_BAD_REC_SIZE
Record sizes may range from 1 to %s
Action: Correct the indicated error in the sort specification.

(-23) NSORT_BAD_REC_SIZE_SPEC
Record size must be followed by an integer or 'variable'
Action: Correct the indicated error in the sort specification.

(-24) NSORT_REC_MUST_BE_VARLEN
This modifier is supported only on non fixed-size records
Action: Correct the indicated error in the sort specification.

(-25) NSORT_MAXLEN_NEEDS_INT
The integral maximum size was expected here
Action: Correct the indicated error in the sort specification.

(-26) NSORT_MAXLEN_INVALID
The maximum size may range from 1 to %s
Action: Correct the indicated error in the sort specification.

(-27) NSORT_MINLEN_NEEDS_INT
The integral minimum size was expected here
Action: Correct the indicated error in the sort specification.

(-28) NSORT_MINLEN_INVALID
The minimum size may range from 1 to %s
Action: Correct the indicated error in the sort specification.
Nsort User Guide

147
(-29) NSORT_CHARACTER_NEEDED
A character constant (e.g. ',') is expected here
Action: Correct the indicated error in the sort specification.

(-30) NSORT_TYPE_NOT_DELIMITABLE
Delimiters are accepted only for string types
Action: Correct the indicated error in the sort specification.

(-31) NSORT_FIELD_ALREADY_TYPED
This field already has a type
Action: Correct the indicated error in the sort specification.

(-32) NSORT_FLOAT_SIZE
The size of a single precision floating point field is 4 bytes
Action: Correct the indicated error in the sort specification by removing the
size specifiler.

(-33) NSORT_DOUBLE_SIZE
The size of a double precision floating point field is 8 bytes
Action: Correct the indicated error in the sort specification by removing the
size specifiler.

(-34) NSORT_PACKED_UNIMPLEMENTED
Packed decimal is not yet supported
Action: Correct the indicated error in the sort specification.

(-35) NSORT_FIELD_TOO_SHORT
This field would end before it would start
Action: Correct the indicated error in the sort specification by changing either
the field start or end position.

(-36) NSORT_POSITION_NEEDED
An integer value is expected after 'position:'
Action: Correct the indicated error in the sort specification.

(-37) NSORT_DUPLICATE_FIELDNAME
Another field has already been given this name

Action: Correct the indicated error in the sort specification.
Nsort User Guide

148
(-38) NSORT_FIELD_SIZE_NEEDED
An integer value is expected after 'size:'
Action: Correct the indicated error in the sort specification.

(-39) NSORT_NO_LICENSE
A -license="<license string>" statement is needed to run nsort
Action: Contact Ordinal. As a workaround, get a temporary license from
http://www.ordinal.com/temporary.cgi

(-40) NSORT_FIELD_ALREADY_SIZED
The extent of this field has already been specified
Action: Correct the indicated error in the sort specification.

(-41) NSORT_FIELD_ALREADY_DELIMITED
This field already has a delimiter
Action: Correct the indicated error in the sort specification.

(-42) NSORT_FIELD_SYNTAX
Syntax error in field description
Action: Correct the indicated error in the sort specification.

(-43) NSORT_POSITION_POSITIVE
The position of a field starts at 1, not 0
Action: Correct the indicated error in the sort specification.

(-44) NSORT_KEY_FIELD_MISSING
The field named in this key specification is undefined
Action: Correct the indicated error in the sort specification.

(-45) NSORT_KEY_ALREADY_TYPED
This key already has a type defined for it
Action: Correct the indicated error in the sort specification.

(-46) NSORT_MMAP_ZERO_FAILED
Mmap %s bytes of /dev/zero failed: %s; Out of swap space?
Action: Either reduce the memory limit specified to Nsort, or increase the
amount of available swap space.
Nsort User Guide

149
(-47) NSORT_REDUNDANT_ORDERING
Both 'ascending' and 'descending' may not be specified for a single key
Action: Correct the indicated error in the sort specification.

(-48) NSORT_KEY_SYNTAX
Syntax error in key description
Action: Correct the indicated error in the sort specification.

(-49) NSORT_KEY_NUMBER
An integer value is expected after 'number:'
Action: Correct the indicated error in the sort specification.

(-50) NSORT_KEY_NUMBER_INVALID
Key numbers may range from 1 through 255
Action: Correct the indicated error in the sort specification.

(-51) NSORT_KEY_NUMBER_DUPLICATE
This number has already been specified for another key
Action: Correct the indicated error in the sort specification.

(-52) NSORT_DERIVED_NEEDS_VALUE
A derived fields needs a value=<constant> specifier
Action: Correct the indicated error in the sort specification.

(-53) NSORT_FIELD_MISSING
The field "%s" is undefined
Action: Correct the indicated error in the sort specification.

(-54) NSORT_NON_NUMERIC_DERIVED
This derived field cannot have a numeric value
Action: Correct the indicated error in the sort specification.

(-55) NSORT_NON_STRING_DERIVED
This derived field cannot have a string value
Action: Correct the indicated error in the sort specification.

(-56) NSORT_PAGESIZE_POW2
This pagesize is not a power of two >= %s
Action: Correct the indicated pagesize error in the sort specification.
Nsort User Guide

150
(-57) NSORT_SUMMARIZE_FIELD_MISSING
The summarize field named "%s" was not defined
Action: Correct the indicated error in the sort specification.

(-58) NSORT_OPEN_FAILED
The file "%s" was not opened: %s
Action: Verify that the specified file exists and that the user has access to it.

(-59) NSORT_MEMORY_NEEDED
An integer number of kilobytes of memory to use was expected here
Action: Correct the indicated error in the sort specification.

(-60) NSORT_IOSIZE_UNALIGNED
The i/o transfer size for "%s" must be a multiple of %s bytes
Action: Correct the indicated file transfer size error in the sort specification.

(-61) NSORT_IOSIZE_TOO_LARGE
The maximum i/o transfer size for "%s" is %s bytes
Action: Reduce the indicated file transfer size in the sort specification.

(-62) NSORT_LICENSE_FAILURE
%s: %s
Action: Contact Ordinal. As a workaround, get a temporary license from
http://www.ordinal.com/temporary.cgi

(-63) NSORT_LICENSE_MALFORMED
Missing license field; the license format is:
-license="nsort <version> <platform> <serial#> <fmt> [#cpus] <exp. date>
<key>"
Action: Contact Ordinal. As a workaround, get a temporary license
from http://www.ordinal.com/temporary.cgi

(-64) NSORT_CPU_REQ_NEEDED
An integer number of processors to use was expected here
Action: Correct the indicated error in the sort specification.

(-65) NSORT_NO_VARIABLE_EDITING
Nsort does not yet support editing of variable records
Action: Correct the indicated error in the sort specification.
Nsort User Guide

151
(-66) NSORT_CAT_ONLY_ONE
Multiple output files are not supported for file copying and concatenation
Action: Correct the indicated error in the sort specification.

(-67) NSORT_FORMAT_SPEC
A record format specification needs either size:<number> or
delimiter:<character>
Action: Correct the indicated error in the sort specification.

(-68) NSORT_BAD_METHOD
Known sorting methods are 'record' and 'pointer'
Action: Correct the indicated error in the sort specification.

(-69) NSORT_BAD_HASHSPEC
Known sorting method qualifiers are 'hash' and 'nohash'
Action: Correct the indicated error in the sort specification.

(-70) NSORT_VARIABLE_NEEDS_KEY
A variable size record needs an explicit key definition
Action: Correct the indicated error in the sort specification.

(-71) NSORT_BAD_CHARACTER_SPEC
Unrecognized escape sequence in character constant
Action: Correct the indicated error in the sort specification.

(-72) NSORT_CHARACTER_TOO_LARGE
Oversized escape sequence in character constant
Action: Correct the indicated error in the sort specification.

(-73) NSORT_MISSING_QUOTE
Trailing single quote (') missing
Action: Correct the indicated error in the sort specification.

(-74) NSORT_FILENAME_MISSING
A filename was expected here
Action: Correct the indicated error in the sort specification.
Nsort User Guide

152
(-75) NSORT_FILESYS_NAME_MISSING
A file or filesystem name was expected here
Action: Correct the indicated error in the sort specification.

(-76) NSORT_SUMMARIZE_DUPLICATES
A summarizing sort may not specify that duplicate keys are to be kept
Action: Correct the indicated error in the sort specification.

(-77) NSORT_NOT_STATEMENT
This is not a statement name
Action: Correct the indicated error in the sort specification.

(-78) NSORT_EXTRA_INSIDE_STATEMENT
A comma was expected here
Action: Correct the indicated error in the sort specification.

(-79) NSORT_EXTRA_AFTER_STATEMENT
Extra characters were found after the end of the statement
Action: Correct the indicated error in the sort specification.

(-80) NSORT_EXTRA_REFORMAT
This is an extra reformat statement
Action: Correct the indicated error in the sort specification.

(-81) NSORT_RECORD_SORTS_VARLEN
Record sorts are supported only for fixed-size records
Action: Correct the indicated error in the sort specification.

(-82) NSORT_RECORD_SORT_TOO_LARGE
Record sorts are limited to no more than %s byte records
Action: Correct the indicated error in the sort specification.

(-83) NSORT_RECORD_TOO_LONG
The record at %s in "%s" is longer than the maximum of %s
Action: Either increase the maximum record size using a -format statement, or
make sure that longer records do not appear in the sort input.
Nsort User Guide

153
(-84) NSORT_RECORD_TOO_SHORT
The record at %s in "%s" is shorter than the minimum of %s
Action: Either decrease the minimum record size using a -format statement, or
make sure that shorter records do not appear in the sort input.

(-85) NSORT_REFORMAT_TOO_FAR
Reformatting at the field "%s" would exceed the maximum record size of %s
Action: The reformatting of a particular record in the input would cause the
resulting record size to be larger than the maximum record size. Either
increase the maximum record size using a -format statement, or make sure that
such records do not appear in the sort input.

(-86) NSORT_PARTIAL_RECORD
Data format error: the size of "%s" is not a multiple of the record size
Action: Either fix the specified input file so that it contains a multiple of the
(fixed) record size, or change the record size.

(-87) NSORT_DELIM_MISSING
Data format error: the record at %s in "%s" does not have a delimiter
Action: Either first the offending record in the given input file, or change the
record delimiter with a -format statement.

(-88) not used

(-89) NSORT_FIELD_BEYOND_END
The field "%s" extends beyond the end of the record
Action: Correct the indicated error in the sort specification.

(-90) NSORT_PAST_MEMORY_LIMIT
There are only %s megabytes of %s available
Action: Either reduce the memory size specified with -memory, or increase the
indicated memory limit (per-process memory limit or available swap space).

(-91) NSORT_SPEC_OPEN
Specification file "%s" could not be opened: %s
Action: Check the specification file name, path and permissions.
Nsort User Guide

154
(-92) NSORT_SPEC_TOO_DEEP
Loop detected: specification file "%s" including "%s"
Action: Verify the named specification file does not reference itself or is part of
a cycle of specification files, otherwise reduce the maximum specification file
reference depth.

(-93) NSORT_INPUT_OPEN
Input file "%s" could not be opened: %s
Action: Check the input file name, path and permissions.

(-94) NSORT_OUTPUT_OPEN
Output file "%s" could not be opened for writing: %s
Action: Check the output file name, path and permissions.

(-95) NSORT_FILESYS_ERRNO
File or filesystem "%s" could not be accessed: %s
Action: Check the file or filesystem name, path and permissions.

(-96) NSORT_TEMPFILE_STAT
Temp file "%s" could not be opened: %s
Action: Check the temporary file name, path and permissions.

(-97) NSORT_TEMPFILE_BAD_TYPE
Temp file "%s" is not a directory or plain file
Action: Check the temporary file name, path and type.

(-98) NSORT_TEMPFILE_OPEN
Temp file "%s" could not be opened for writing: %s
Action: Verify the named temporary file name and path are correct, and that
the user has write permission in the directory.

(-99) not used

(-100) NSORT_FIELD_MAX_ONLY_SEP
Only separated fields may have maximum_size specifications
Action: Correct the indicated error in the sort specification.

(-101) not used
Nsort User Guide

155
(-102) NSORT_MEMORY_TOO_SMALL
This sort requires at least %sM of memory
Action: Increase the specifiec memory size.

(-103) NSORT_INVALID_CONTEXT
The Nsort context is not valid
Action: Verify the API sort context id is valid.

(-104) NSORT_INVALID_ARGUMENT
A parameter to an Nsort api function is not valid
Action: Look at API call documentation and compare with actual API call
arguments to determine which argument is invalid.

(-105) NSORT_FIELD_EXCEEDS_MAX
The field "%s" at %s in "%s" size %s exceeds the maximum size %s
Action: Either increase the field's maximum size or fix the record in the input.

(-106) NSORT_MALLOC_FAIL
Malloc() failed to allocate %s bytes of memory
Action: Verify system is not running low on memory.

(-107) NSORT_APIFILES
An api sort may not specify input or output files
Action: Correct the indicated error in the sort specification.

(-108) not used

(-109) NSORT_KEY_BEYOND_END
The key "%s" extends beyond the end of the record
Action: Correct the indicated error in the sort specification.

(-110) not used

(-111) NSORT_CANCELLED
This sort has been cancelled
Action: None.
Nsort User Guide

156
(-112) NSORT_CANT_SEEK
The file %s is not seekable and cannot be used for %s i/o
Action: Verify the file name is correct, otherwise change the file access mode to
"serial".

(-113) NSORT_INTSIZE
Binary integers may have a size of 1, 2, 4, or 8 bytes
Action: Correct the indicated error in the sort specification.

(-114) NSORT_SUMMARY_NEEDS_NUMBER
The summary field "%s" must have a numeric type
Action: Correct the indicated error in the sort specification.

(-115) NSORT_POSITION_REQUIRED
A position or size qualifier is needed
Action: Correct the indicated error in the sort specification.

(-116) NSORT_SYNTAX_ERROR
Syntax Error
Action: Correct the indicated error in the sort specification.

(-117) NSORT_EXTRA_HEX_DIGIT
Hexadecimal strings must contain an even number of characters
Action: Correct the indicated error in the sort specification.

(-118) NSORT_BAD_HEX_DIGIT
Hexadecimal strings may contain characters only in the range [0-9A-Fa-f]
Action: Correct the indicated error in the sort specification.

(-119) NSORT_STRING_TOO_LONG
This string is too long; the limit is %s bytes
Action: Correct the indicated error in the sort specification.

(-120) NSORT_MISSING_DOUBLE_QUOTE
Trailing double quote (") missing
Action: Correct the indicated error in the sort specification.
Nsort User Guide

157
(-121) NSORT_TOO_MANY_KEYS
Too many keys were defined: supported limit is at least 4000
Action: Correct the indicated error in the sort specification.

(-122) NSORT_SUMMARIZED_KEY
The summary field "%s" overlaps the key "%s"
Action: Correct the sort specification to not allow an overlap between keys and
summarized fields.

(-123) NSORT_MERGE_MISORDERED
Record at %s in file "%s" is misordered
Action: Verify merge specification is correct, otherwise correct out-of-order
merge input.

(-124) NSORT_MERGE_NOEDIT
File merging does not yet support input record editing
Action: Correct the indicated error in the sort specification.

(-125) NSORT_APPEND_CHANGED
Output file "%s" changed during sort; append cancelled
Action: Do not allow the output file to be changed by other processes while
Nsort is running.

(-126) NSORT_APPEND_NOSTDOUT
Append to standard output is not supported
Action: Correct the indicated error in the sort specification.

(-127) NSORT_MLD_CREATE
The creation of a memory locality domain failed: %s
Action: Contact Ordinal.

(-128) NSORT_MLDSET_CREATE
The creation of the memory locality domain set failed: %s
Action: Contact Ordinal.

(-129) NSORT_MLDSET_PLACE
The placement of the memory locality domain set failed: %s
Action: Contact Ordinal.
Nsort User Guide

158
(-130) NSORT_TERM_SYNTAX
Syntax error in boolean term
Action: Correct the indicated error in the sort specification.

(-131) NSORT_RE_RANGE_END
Malformed regular expression: range endpoint too large
Action: Correct the indicated error in the sort specification.

(-132) NSORT_RE_NUMBER
Malformed regular expression: bad number
Action: Correct the indicated error in the sort specification.

(-133) NSORT_RE_DIGIT_RANGE
Malformed regular expression: digit out of range
Action: Correct the indicated error in the sort specification.

(-134) NSORT_RE_DELIMITER
Malformed regular expression: illegal or missing delimiter
Action: Correct the indicated error in the sort specification.

(-135) NSORT_RE_REMEMBERED
Malformed regular expression: no remembered search string
Action: Correct the indicated error in the sort specification.

(-136) NSORT_RE_PAREN_IMBALANCE
Malformed regular expression: \\(\\) imbalance
Action: Correct the indicated error in the sort specification.

(-137) NSORT_RE_TOO_MANY_PARENS
Malformed regular expression: too many \\(
Action: Correct the indicated error in the sort specification.

(-138) NSORT_RE_TOO_MANY_NUMS
Malformed regular expression: more than 2 numbers given in \\{ \\}
Action: Correct the indicated error in the sort specification.

(-139) NSORT_RE_BRACE_EXPECTED
Malformed regular expression: } expected after \\
Action: Correct the indicated error in the sort specification.
Nsort User Guide

159
(-140) NSORT_RE_NUM_PAIR
Malformed regular expression: number exceeds second in \\{ \\}
Action: Correct the indicated error in the sort specification.

(-141) NSORT_RE_BKT_IMBALANCE
Malformed regular expression: [] imbalance
Action: Correct the indicated error in the sort specification.

(-142) NSORT_RE_EXPBUF_OVERFLOW
Malformed regular expression: regular expression overflow
Action: Correct the indicated error in the sort specification.

(-143) NSORT_GENERATE_COUNT
A record count=N is needed when generating records
Action: Correct the indicated error in the sort specification.

(-144) NSORT_REFORMAT_FIELD_MISSING
The field "%s" is not available for reformatting
Action: Verify the field name is correct and has been defined.

(-145) NSORT_EXPECTED_THEN
The keyword "then" is expected after "if" <condtion>
Action: Correct the indicated error in the sort specification.

(-146) NSORT_FIELD_REMOVED
The field "%s" was removed by a prior /reformat
Action: Correct the indicated error in the sort specification.

(-147) NSORT_EXPECTED_ELSE
The keyword "else" is expected after "if" ... "then"
Action: Correct the indicated error in the sort specification.

(-148) NSORT_TYPE_CHANGED
Reformat changed types incompatibly: %s to %s
Action: Correct the indicated error in the sort specification.

(-149) NSORT_REFORMAT_KEY_MISSING
The key "%s" must be included by input reformatting
Action: Correct the indicated error in the sort specification.
Nsort User Guide

160
(-150) NSORT_EXCESSIVE_CONSTANT
The type "%s" is not large enough to contain %s
Action: Correct the indicated error in the sort specification.

(-151) NSORT_RECURSIVE_DERIVED
The value of "%s" may not refer to itself
Action: Correct the indicated error in the sort specification.

(-152) NSORT_REFORMAT_COND
The condition "%s" may not be named in a reformat list
Action: Correct the indicated error in the sort specification.

(-153) NSORT_MONTH_TOO_SHORT
A field of type "month" must be at least 3 characters long
Action: Correct the indicated error in the sort specification.

(-154) NSORT_FILTER_INCOMPAT_KEYS
A filter or copy may not have any keys
Action: Correct the indicated error in the sort specification.

(-155) NSORT_INCOMPAT_RECORD_TYPE
Separated fields are only supported in separated records
Action: Correct the indicated error in the sort specification.

(-156) NSORT_PADTYPES_DIFFER
Two strings have different pad chracters %s, %s in "%s"
Action: Correct the indicated error in the sort specification.

(-157) NSORT_RECORD_MTBUF_SIZE
The record at %s in "%s" is too large for the calculated maximum_size of %s
Action: Either 1) explicitly increase the transfer size of the temp file (for a sort)
or input files (for a merge) to be larger than twice the calculated maximum
record size given in the error message, 2) increase the Nsort memory limit, or
3) reduce the maximum size of the records in the input.

(-158) NSORT_UNSUPPORTED_MERGE_SELECTOR
Merge does not support input selection
Action: Correct the indicated error in the sort specification.
Nsort User Guide

161
(-159) NSORT_MISSPELLED_KEYWORD
Unexpected token; perhaps a command name has been misspelled?
Action: Check the spelling of keywords in the sort specification.

(-160) NSORT_STRING_EXPECTED
A quoted string is expected here
Action: Correct the indicated error in the sort specification.

(-161) NSORT_FILTER_CANNOT_GROW
Record copying currently does not allow records to become larger
Action: Correct the indicated error in the sort specification.

(-162) NSORT_UNUSED_REFORMAT
Record copying ignores input reformatting when output reformatting is also
specified
Action: Correct the indicated error in the sort specification.

(-163) NSORT_BAD_DELIM_MOD
Unrecognized field modifier; valid ones are "bdfiMnr "
Action: Limit field modifiers to the character list in the error message.

(-164) NSORT_COL_DOT_OFF
A delimited field is specified as <column_number>[.<character_offset]
Action: Either drop the field-specific delimiter, or define the field as starting at
a fixed position from the beginning of the record.

(-165) NSORT_IMPLICIT_DERIVED_REFORMAT
Derived fields such as "%s" must be explicitly added to non fixed-size
records
Action: Create a reformat statement that includes the dervied field and other
desired fields.

(-166) NSORT_BAD_FIELD_SIZE
Field sizes may range from 1 to 65535 bytes
Action: Reduce the field size to 65,535 (or 8MB for the Windows versions of
Nsort).
Nsort User Guide

162
(-167) NSORT_REFORMAT_KEY_UNNAMED
A key ("%s") must refer to a named field when reformatting the input record
Action: Correct the indicated error in the sort specification.

(-168) NSORT_REFORMAT_FIXED_STREAM
Stream records do not support reformatting of fixed sized fields such as "%s"
Action: Correct the indicated error in the sort specification.

(-169) NSORT_DELIMFIELDS_DEPRECATED
Delimited fields are no longer supported
Action: Correct the indicated error in the sort specification.

(-170) NSORT_ALREADY_POSITIONED
This field already has been positioned
Action: Use only one position/offset for the field.

(-171) NSORT_REFORMAT_DELIMITED
The delimited field "%s" may not be reformatted
Action: Correct the indicated error in the sort specification.

(-172) NSORT_KEY_EXCEEDS_MAX
The key "%s" at %s in "%s" size %s exceeds the maximum size %s
Action: Either increase the key's maximum size or fix the record in the input.

(-173) NSORT_REMAINDER_REFORMAT
The field "%s" contains an unknown number of subfields and may be placed
only at the end of the reformat list
Action: Correct the indicated error in the sort specification.

(-174) NSORT_BINARY_IN_DELIMITED
Delimited records cannot contain fields of type %s
Action: Correct the indicated error in the sort specification.

(-175) NSORT_SUMMARIZE_NEEDS_KEY
No key was given for a summarizing sort
Action: Correct the indicated error in the sort specification.
Nsort User Guide

163
(-176) NSORT_LOGICAL_EXPR_NEEDED
The selector "%s" needs a logical expression
Action: Correct the indicated error in the sort specification.

(-177) NSORT_UNSUPP_CHANGE_RECORD
Nsort does not support changing between fixed-size and stream records
Action: Correct the indicated error in the sort specification.

(-178) NSORT_CANNOT_DETERMINE_POSITION
Nsort needs an position specification for this field
Action: Correct the indicated error in the sort specification.

(-179) NSORT_OUT_OF_SWAP
Insufficient space to map %sMB of memory: %s
Action: Either reduce the Nsort memory limit or free up system swap space.

(-180) NSORT_RESOURCE_LIMITED
Resource limits constrained Nsort to only %dMB of memory
Action: Either reduce the Nsort memory limit or increase the process memory
resource limit (using the shell).

(-181) NSORT_32BIT_LIMITED
This 32-bit Nsort is constrained to use at most %sMB of memory
Action: Either reduce the Nsort memory limit, or use the 64-bit version of
Nsort.

(-182) NSORT_SYSCALL
API system call failed %s %s
Action: Contact Ordinal.

(-183) NSORT_INVALID_PHASE
API call out of sequence; expected %s != %s
Action: Make sure API calls are done in normal order.

(-184) NSORT_LOCK_FAILED
API call: mutex_lock failed; %s
Action: Contact Ordinal.

(-185) not used
Nsort User Guide

164
(-186) NSORT_UNLOCK_FAILED
API call: mutex_unlock failed; %s
Action: Contact Ordinal.

(-187) NSORT_COMPARE_UNDECLARED
The comparison function "%s" has not been declared
Action: Correct the indicated error in the sort specification.

(-188) NSORT_FOLD_POINTER
The 'fold_upper' and 'fold_lower' modifiers are currently supported only for
pointer sorts
Action: Don't specify a sort method of "record" to use fold_upper or
fold_lower.

(-189) NSORT_THREAD_CREATE
Nsort could not create a thread: %s
Action: Contact Ordinal.

(-190) NSORT_PWRITE64_ERROR
pwrite64 system call does not work on this Solaris 2.7 server, please install
Solaris patch 106980-18
Action: Install specified Solaris patch.

(-191) NSORT_BAD_MERGE_INPUT
The merge input callback function is not defined
Action: Define a merge input callback function in the nsort_merge_define()
call.

(-192) NSORT_BAD_MERGE_WIDTH
The merge width has not been specified
Action: Define a merge width in the nsort_merge_define() call.

(-193) NSORT_API_DEFINE_MERGE
Merge is not allowed with nsort_define(), use nsort_merge_define() instead
Action: Drop the -merge statement with nsort_define(), or use
nsort_merge_define() to initiate a merge.
Nsort User Guide

165
(-194) NSORT_API_MERGE_INPUT
Input file definitions are not allowed with nsort_merge_define()
Action: Remove input file specifications with nsort_merge_define().

(-195) NSORT_UNKNOWN_SCALE
Invalid numeric scale in "%s"; supported values are [kmg]
Action: Modify the scale suffix for the number being specified.

(-196) NSORT_NUMBER_OVERFLOW
The number in "%s" is too large for a 64-bit integer
Action: Modify the specified number.

(-197) NSORT_NEEDS_STRING
A character string is needed here
Action: Provide the needed character string.

(-198) NSORT_EXTRA_DOES
Syntax error: this operator already has a ‘does’ modifier
Action: Delete the redundant does.

(-199) NSORT_EXTRA_NOT
Syntax error: this operator already has ‘not’ modifier
Action: Delete the redundant not.

(-200) NSORT_NOT_UNSUPPORTED
Syntax error: this operator does not support the ‘not’ modifier
Action: Delete the unsupported not.

(-201) NSORT_IN_REC_SIZE_REQUIRED
The input format statement needs an integer record size
Action: Provide the record size in the format statement.

(-202) NSORT_BAD_BIT_FIELD
Illegal bit field declaration
Action: Correct the bit field declaration.

(-203) NSORT_BIT_POSITION_TOO_LARGE
Bit field offsets can range from 0 through 7
Action: Correct the bit field offset to 0-7 or position to 1-8.
Nsort User Guide

166
(-204) NSORT_BIT_SIZE_TOO_LARGE
Bit field sizes cannot exceed their position:
Action: Reduce the bit field size to fit be within a byte.

(-205) NSORT_REFORMAT_NEEDS_MAXSIZE
Please specify a maximum size for the variable string field "%s"
Action: Provide the maximum size for the named field.

(-206) NSORT_VALUE_CONTAINS_SPECIAL
The "%s" value "%s" may not contain the %s
Action: Correct the nsort value.

(-207) NSORT_PARTIAL_VARIABLE_RECORD
The last record "%s" (offset %s) would extend beyond the end of the file
Action: Fix record at the end of the file.

(-208) NSORT_EXTRA_FORMAT
The format of this file has already been specified
Action: Remove the duplicate format statement.

(-209) NSORT_SIZE_BEYOND_LICENSE
This sort is larger than the license key allows
Action: Reduce the input size or obtain a license with a larger input size limit.

(-210) NSORT_PACKED_SIZE_TOO_LARGE
The size of a packed decimal field cannot exceed 31
Action: Correct the size of the packed decimal field.

(-211) NSORT_PACKED_OVERFLOW
The number in "%s" is too large for a packed decimal field
Action: Correct to the too large number.

(-212) NSORT_MERGE_INPUT_CALLBACK_OVERWRITE
The merge input callback function for input stream %s offset %s size %s
wrote beyond the end of the buffer
Action: Correct the merge input callback function to not overwrite the buffer.
Nsort User Guide

167
(-213) NSORT_USER_RAISED_ERROR
User-defined comparison or merge input callback error: %s
Action: Fix the error raised by the comparison or callback function.
Nsort User Guide

168
Warnings

(1) NSORT_END_OF_OUTPUT
All records have been returned
Action: None.

(2) NSORT_CLOSE_FAILED
The file "%s" was not closed: %s
Action: None.

(3) NSORT_UNLINK_FAILED
The temp file "%s" could not be removed: %s
Action: None.

(4) NSORT_MEMORY_MINIMAL
This operation appears to need %sMB of memory; excessive paging is
possible; continuing
Action: Increase Nsort's memory limit for better performance.

(5) NSORT_EXCESSIVE_PAGING
Performance caution: Excessive paging (%s faults) detected
Action: Nsort's memory limit (specified or default) is larger than the amount of
physical memory available to it. Try reducing the memory limit.

(6) NSORT_REDUCING_IOSIZE
The default i/o transfer size of %s is too large for available memory;
reducing to %s
Action: Either eliminate input file transfer size specifications for the merge, or
reduce them to the result size indicated in the warning message.

(7) NSORT_PMTRACE_PROBLEM
Peformance Co-Pilot pmdatrace error for %s: %s
Action: Contact Ordinal.
Nsort User Guide

169
(8) NSORT_SUMMARIZE_OVERFLOWED
Some summarizations would have overflowed; the output may contain
duplicate keys
Action: Increase the maximum field size of the summarized field so that all
unique sets of keys will have only one record in the output.

(9) not used

(10) NSORT_CPU_REQ_TOOBIG
This system's processor count is only %s
Action: Reduce the requested processor count to the number indicated in the
warning message.

(11) NSORT_CPU_REQ_RESTRICTED
This system has only %s out of %s processors available to you
Action: Reduce the requested processor count to the number indicated in the
warning message.

(12) NSORT_RECSORT_OUTFILES
Multiple output files requires pointer sorts; continuing
Action: Either delete the -method=record directive, or specify only one output
file.

(13) NSORT_POINTER_SORT_ONLY
Output file editing and selection require pointer sorts; continuing
Action: Either delete the -method=record directive, or delete the include, omit
and reformat directives.

(14) NSORT_TEMPFS_INAPPROPRIATE
%s is on a tmpfs filesystem; this may cause poor performance
Action: Don't specify a paging-based temporary file system on Solaris (e.g.
/tmp) for the the temporary file. For better performance (especially with large
data sets) use normal file systems such as /var/tmp.

(15) NSORT_CONVERSIONS_OVERFLOWED
The values of %s expressions were too large to fit in their derived fields
Action: Increase the size of a derived field to avoid overflow.

(16) not used
Nsort User Guide

170
(17) not used

(18) NSORT_MLDLINK
Process_mldlink() failed in sproc %s: %s
Action: Contact Ordinal.

(19) NSORT_RUNANYWHERE
Sysmp(RUNANYWHERE) failed in sproc %s: %s
Action: Contact Ordinal.

(20) NSORT_UNDEFINED_KEY
The semantics for the key %s are not defined
Action: Using the Unix sort sematics for specifying the ending position of a
key, do not specify both a last chararter of 0 and the skip blanks modifier ('b').

(21) NSORT_KEY_TOO_SHORT
The key "%s" starts after it ends
Action: Correct the indicated error in the sort specification.

(22) NSORT_DETAIL_IO
Error writing detailed statistics log "%s" at %s bytes: %s; continuing without
detail log
Action: Contact Ordinal.

(23) NSORT_RETURN_BUF_SMALL
The return buf is too small (size %s) to hold the next result record (size %d)
Action: Either increase the size of the buffer passed to nsort_return_recs() so
that it is large enough to hold the maximum record size, or reduce the
maximum record size using -format=maximum:N.

(24) NSORT_IGNORING_KEY
The key "%s" is the same as "%s"; ignoring it
Action: Delete the duplicate use of a key in the sort specification.

(25) NSORT_DELIMITER_ADDED
The file "%s" did not end with the record delimiter [but %s]; one has been
added
Action: Make sure the input file is correct and the correct record delimiter is
specified. If necessary, add a record delimiter to the end of the input file.
Nsort User Guide

171
(26) NSORT_PREALLOCATE
Preallocation failure "%s" : %s
Action: Make sure you have the correct privilege for preallocation
(SE_MANAGE_VOLUME_NAME for Windows systems).
Nsort User Guide

172
Nsort User Guide

Index
A
access mode, 104
aggregate, 76
API, 113
API usage

merge, 127
sort, 116

applications, 2
ascending qualifier, 66

B
beginning field number, 57
binary coded decimal, 67
binary data type, 67
binary qualifier, 67
bit data type, 68
bit qualifier, 68
buffered file i/o, 104
byte-position fields, 55

C
character constants, 30, 31
character data type, 68
character pad, 68
character qualifier, 68
command
configuration, 42
data definition, 33, 45
field definition, 35, 52
file definition, 40
format definition, 34
key definition, 36, 64
Nsort, 30
performance, 42
precedence, 32
processing, 32
record definition, 34
sort definition, 38

command line, 17
POSIX sort compatible, 23
standard, 19
Windows sort compatible, 26

compiling, 114
condition command, 95
conditional expressions, 94
conditions, 95
configuration, 15, 97
configuration statements, 42
constant

character, 30, 31
CONTAINS relationship operator, 95
count

limiting records read, 83

174 Index
simultaneous i/o requests, 105
count option limiting records read, 83
count qualifier for file i/o, 105
counting records by key value, 92
CT relationship operator, 95

D
data

definition statements, 33, 45
describing sort, 45
input size, 111
transformation, 80

data type, 37, 67
binary, 67
binary coded decimal, 67
bit, 68
character, 68
decimal, 69
floating point, 69

double-precision, 69
integer, 67
month, 70
packed, 67
POSIX style, 62
unsigned, 67

data warehouse, 2
database administrator, 2
dataset size, 111
decimal data type, 69
decimal qualifier, 69
default field value qualifier, 50
default temporary files, 108, 109
definition statement

data, 33, 45
field, 35, 52
file, 40
format, 34
key, 36, 64
record, 34
sort, 38, 71

delete duplicate records, 14, 79
delimited records, 49
delimiter qualifier

field, 54
record, 49

derived command, 90
derived fields, 11, 90
descending qualifier, 66
described keys, 65
describing sort data, 45
describing your sort, 29
direct file access mode, 104
direct file i/o, 104
disk

access mode, 104
i/o

multiple simultaneous
requests, 105

transfer size, 105
disk i/o, 104
DOES NOT CONTAIN relationship

operator, 95
double qualifier, 69
double-precision floating point data

type, 69
duplicate record

deleting, 14, 79
duplicates command, 79

E
EBCDIC, 68
ending field number, 59
environment variable, 22
EQ relationship operator, 95
error callbacks

API, 139
error handling

API, 138
example program

merge, 131
sort, 125

expressions, 93
conditional, 94
Nsort User Guide

175
F
features

merge, 6
Nsort, 3
sort, 5
summarize, 8

field
beginning number, 57
data types, 37
definition statements, 35, 52
delimiter qualifier, 54
derived, 11, 90
ending number, 59
fold_lower qualifier, 63
fold_upper qualifier, 63
key, 64
maximum_size qualifier, 63
name qualifier, 53
offset qualifier, 63
open-ended, 59
pad qualifier, 63
position qualifier, 55
separator

changing, 87
separators, 49
size qualifier, 53

field command, 52
fields

byte-position, 55
input, 56
separated, 56
separated vs. input, 56

file
access mode, 104
definition statements, 40
i/o, 104

multiple simultaneous
requests, 105

options, 41
outfile, 82

multiple, 13
specification, 20
transfer size, 105

fixed-length records, 47

float qualifier, 69
floating point data type, 69

double-precision, 69
fold_lower qualifier, 63
fold_upper qualifier, 63
format definition statements, 34
format statement, 46
function library, 113

G
GE relationship operator, 95
global options, 21

environment variable, 22
systemwide default, 21
user default, 22

GT relationship operator, 95

H
hash option, 101
hashing keys, 101

I
i/o, 104

multiple simultaneous requests, 105
include command, 81
include records, 12, 81
input fields, 56
input file wildcards, 106
input reformatting, 85
input size, 111
integer data type, 67
integer qualifier, 67

K
key

ascending sort, 66
data types, 37
definition statements, 36, 64
descending sort, 66
described, 65
Nsort User Guide

176 Index
field name qualifier, 65
fields, 64
hashing sort method, 101
number qualifier, 66
sort direction qualifier, 66

key command
described, 65
named, 65

L
LE relationship operator, 95
length-prefix records, 48
library, 113
library name, 114
linking, 114
LT relationship operator, 95

M
mapped file i/o, 104
match command, 96
match detection, 96
maximum_size qualifier

field, 63
record, 51

memory command, 98
memory usage, 98
merge, 74

features, 6
merge API, 127
merge API example, 131
merge command, 74
merge input callback, 129
method

sort, 100
key hashing, 101

method command, 100
minimum_size qualifier

record, 51
month data type, 70
month qualifier, 70
multiple output files, 13

multiple simultaneous i/o requests, 105

N
name qualifier

fields, 53
named keys, 65
NC relationship operator, 95
NE relationship operator, 95
no_duplicates command, 79
no_statistics command, 102
NSORT environment variable, 22
Nsort features, 3
Nsort statements, 30
nsort.param file, 21
nsort_declare_function API call, 136
nsort_define API call, 117
nsort_end API call, 123
nsort_get_stats API call, 121
nsort_merge_define API call, 128
nsort_print_stats API call, 122
nsort_raise_error API call, 141
nsort_release_end API call, 119
nsort_release_recs API call, 118
nsort_return_recs API call, 120
nsort_version API call, 124
number of processes, 99
number of threads, 99
number qualifier, 66
numbered keys, 66

O
offset qualifier, 63
omit command, 81
omit records, 12, 81
open-ended fields, 59
operator

does not contain, 95
option

environment variable, 22
file, 41
Nsort User Guide

177
global, 21
environment variable, 22
systemwide default, 21
user default, 22

record
size, 48

sort method, 43
systemwide default, 21
user default, 22

outfile selection, 82
output files

multiple, 13
output reformatting, 86

P
packed data type, 67
packed qualifier, 67
pad qualifier, 63, 68
performance, 15, 97
performance statements, 42
position qualifier, 55
posix command line argument, 25
POSIX sort compatible command line, 23
POSIX-style data types, 62
preallocate file qualifier, 107
preallocte file qualifier, 109
prefix length records, 48
presorting, 2
processes

number of, 99
processes command, 99
processing commands, 32
projection see reformat, 84

Q
qualifier

default field, 50
field

delimiter, 54
fold_lower, 63
fold_upper, 63

maximum_size, 63
name, 53
offset, 63
pad, 63
position, 55
size, 53

field separators, 49
key

ascending, 66
descending, 66
name, 65
number, 66
sort direction, 66

record
delimiter, 49
maximum_size, 51
minimum_size, 51
size, 47

skip_blanks, 50

R
record

definition statements, 34
delete duplicates, 14, 79
delimited, 49
delimiter

changing, 87
fixed-length, 47
format, 46

changing, 87
include, 12, 81
length-prefix, 48
limiting count read, 83
maximum size, 51
minimum size, 51
omit, 12, 81
reformat, 10

on input, 85
on output, 86
restrictions, 88

selection, 12, 81
variable-length, 48

reformat, 84
on input, 85
on output, 86
Nsort User Guide

178 Index
record, 10
restrictions, 88

reformat command, 84
relationship operator

contains, 95
equal, 95
greater than, 95
greater than or equal, 95
less than, 95
less than or equal, 95
not equal, 95

S
select records, 12, 81
separated fields, 56
separator qualifier, 49
size

variable option, 48
size qualifier

field, 53
record, 47

skip_blanks qualifier, 50
sort, 72, 76

ascending, 66
data description, 45
definition statements, 38, 71
delete duplicate records, 14
descending, 66
describing, 29
features, 5
merge, 74

features, 6
method

key hashing, 101
method options, 43
methods, 100
statistics, 102
subtotal, 76
summarize, 76

features, 8
sort API, 116
sort API example, 125
sort subroutine library, 113

specification files, 20
standard command line, 19
standard subroutine usage

merge, 127
sort, 116

statement
configuration, 42
data definition, 33, 45
field definition, 35, 52
file definition, 40
format definition, 34
key definition, 36, 64
Nsort, 30
performance, 42
precedence, 32
processing, 32
record definition, 34
sort definition, 38, 71

statistics, 102
API, 121, 122

statistics command, 102
string data type, 68
subroutine library, 113
subroutine usage

merge, 127
sort, 116

subtotal, 76
summarize, 76

features, 8
systemwide default options, 21

T
temporary file wildcards, 108
text data type, 68
threads

number of, 99
threads command, 99
transfer size, 105
transfer_size option, 105
transforming data, 80
Nsort User Guide

179
U
unsigned data type, 67
unsigned qualifier, 67
user default options, 22
user-defined compare

API, 133
argument, 137
example, 137

V
variable-length records, 48
version

API, 124
version information, 103

W
wildcards

input files, 106
temporary files, 108

Windows sort compatible command
line, 26
Nsort User Guide

	Contents
	Introduction 1
	The Nsort Command Line 17
	Specification Language Overview 29
	Describing the Sort Data 45
	Sort Definition Statements 71
	Configuration and Performance 97
	Sort Subroutine Library 113
	Errors and Warnings 143
	Index 173

	Preface
	Intended Audience
	How this Document is Organized
	Notational Conventions
	For More Information

	Introduction
	Putting Nsort to Work for You
	What Nsort Can Do
	Sorting Data
	Merging Input Streams
	Summarizing Fields
	Modifying Sort Actions
	Reformatting Records
	Deriving New Fields
	Selecting Records
	Multiple Output Files
	Deleting Duplicates
	Performance Tuning

	The Nsort Command Line
	The Nsort Command Line
	Standard Command Line

	Specification Files
	Global Options
	System-wide Default File
	User Home Directory File
	Environment Variable
	POSIX Sort Compatible Command Line
	Nsort and POSIX Sort Differences

	Windows Sort Compatible Command Line
	Nsort and Windows Sort Differences

	Specification Language Overview
	Nsort Statements
	Character Constants

	Processing Nsort Commands
	Data Definition Statements
	Record Definition Qualifiers
	Field Definition Qualifiers
	Key Definition Qualifiers
	Supported Key and Field Data Types

	Sort Definition Statements
	File Definition Statements
	File Qualifiers

	Configuration and Performance Statements
	Method Qualifiers

	Describing the Sort Data
	Record Formats
	Fixed Size Records
	Variable (Length-Prefix) Records
	Delimited Records
	Field Separators
	Default Field Value
	Skipping Blanks
	Minimum and Maximum Record Sizes

	Field Definitions
	Field Name
	Size Qualifier
	Delimiter Qualifier
	Position Qualifier
	Byte-Position Fields
	Separated Fields
	Separated Fields vs. Input Fields
	Beginning Field Number
	Ending Field Number
	Open-ended Fields
	Examples
	POSIX-Style Key Types

	Offset Qualifier
	Maximum Field Size
	Pad Qualifier
	Fold_Upper and Fold_Lower

	Key Definitions
	Key Fields
	Named Keys
	Described Keys

	Key Sort Direction
	Key Number

	Data Types
	Binary Integer Data Types
	Packed Decimal Type
	Bit Type
	Character Data Type
	EBCDIC

	Floating Point Data Type
	Double-Precision Floating Point Data Type
	Decimal Data Type
	Month Data Type

	Sort Definition Statements
	Sorting
	Merging Sorted Sets
	Summarizing Data
	Summarizing Separated Fields

	Duplicate Handling
	Transforming Data
	Selecting Records
	Count Limitation
	Reformat
	Input Reformatting
	Output Reformatting
	Changing the Record Format, Field Separator or Record Delimiter

	Reformatting Usage Notes
	Fixed-Size Records
	Delimited Records
	Examples

	Derived Fields
	Default Addition of Derived Fields
	Counting by Key Value

	Expressions
	Numbers in Expressions
	Strings in Expressions
	Field Names in Expressions
	Conditional Expressions

	Conditions
	Match Detection

	Configuration and Performance
	Memory Usage
	Number of Internal Threads
	Sort Methods
	Record and Pointer Sort
	Merge and Radix Sort
	Key Hashing

	Statistics Output
	Version Information
	File I/O
	Access Mode
	Transfer Size
	Count of Simultaneous I/O Requests
	File System Defaults
	Input and Output Files
	Input Files
	Output Files

	Temporary Files
	Multiple Temporary Files

	Dataset Size

	Sort Subroutine Library
	Compiling and Linking
	Compiling and Linking
	Programs that invoke the Nsort API should be linked with the Nsort library. The following table l...
	Linux and Unix Systems
	Windows Systems

	Standard Sort Subroutine Usage
	nsort_define
	Arguments
	Returns

	nsort_release_recs
	Arguments
	Returns

	nsort_release_end
	Arguments
	Returns

	nsort_return_recs
	Arguments
	Returns

	nsort_get_stats
	Arguments
	Returns

	nsort_print_stats
	Arguments
	Returns

	nsort_end
	Arguments
	Returns

	nsort_version
	Arguments
	Returns

	Example Application Program Performing a Sort

	Merging Records
	nsort_merge_define
	Arguments
	Returns

	Merge Input Callback
	Arguments
	Declaring a Merge Input Callback Routine

	Example Application Program Performing a Merge

	User-Defined Compares
	Comparison Function Type
	Arguments
	Returns
	Nota Bene

	nsort_declare_function
	Arguments
	Returns

	Specifying a User-Defined Comparison
	Example
	Example

	Error Handling
	Getting an Error or Warning String
	Arguments

	Error Callbacks
	Arguments
	Declaring an Error Callback Routine

	Raising an Error in a User-Defined Comparison or Merge Input Callback Function
	Errors and Warnings
	A

	Errors
	Warnings
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

